A sound knowledge and understanding of the thermal stability of nanowires is a
prerequisite for the reliable implementation of nanowire-based devices. We investigate the
morphology of Au nanowires annealed isothermally at different temperatures. During
the processes, triggered by heating, the wires undergo various configurational
changes to finally break up into chains of nanospheres at much lower than bulk
melting temperatures due to capillary or so-called Rayleigh instability. The role of
three parameters, namely, wire diameter, temperature, and annealing time, on
the final morphology is investigated. Both the average sphere diameter and the
mean spacing between adjacent spheres are larger than the values predicted for
materials with isotropic surface energy. Possible reasons are discussed in the paper.
The influence of the crystalline structure of nanowires on their thermal instability has been systematically investigated. Both poly- and single-crystalline (SC) cylindrical nanowires with diameters 87 and 132 nm transform into chains of spheres during annealing at 600–700 °C. SC nanowires oriented along the ⟨1 1 0⟩ direction are found to be more stable, i.e. longer annealing times are needed for their complete transformation into sphere chains. Sphere size and spacing between adjacent spheres formed after decay are controlled by the crystallinity of the wires and both are larger in the case of SC nanowires.
Different samples of water, indoor air and soil gas have been collected from Islamabad (33 degrees 38'N, 73 degrees 09'E, altitude of 1760 ft.), the capital of Pakistan and Murree (33 degrees 53'N, 73 degrees 23'E, altitude of 7323 ft.), lying on a geological fault line and are analysed for the estimation of mean effective dose through radon concentrations by using RAD-7, a solid state alpha-detector. The variation of radon concentration in water, indoor air and soil gas in Islamabad region ranges from 25.90-158.40 kBq m(-3), 43.26-97.04 Bq m(-3) and 17.34-72.52 kBq m(-3), having mean values 88.63 kBq m(-3), 70.67 Bq m(-3) and 45.08 kBq m(-3)(,) respectively. It ranges from 1.64-10.20 kBq m(-3), 18.48-42.08 Bq m(-3) and 0.61-3.89 kBq m(-3) with mean values 4.38 kBq m(-3), 28.63 Bq m(-3) and 1.70 kBq m(-3)(,) respectively in Murree and its surroundings. The total mean annual effective doses from water and indoor air of Islamabad and Murree regions are 2.023 and 0.733 mSv a(-1), respectively. These doses are within the recommended limits of the world organisations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.