The vibration control of rotors for gas or steam turbines is usually performed using passive dampers when hydrodynamic bearings are not used. In layouts where the rotating parts are supported by rolling bearings, the damping is usually provided by squeeze film dampers. Their passive nature and the variability of their performances with temperature and frequency represent the main disadvantages. Dampers with magnetorheological and electrorheological fluid allow solving only a part of the abovementioned drawbacks. Active magnetic bearings (AMBs) are promising since they are very effective in controlling the vibration of the rotor and offering the possibility of monitoring the rotor’s behavior using their displacement sensors. However they show serious drawbacks related to their stiffness. Electromagnetic dampers seem to be a valid alternative to visco-elastic, hydraulic dampers due to, among the others, the absence of all fatigue and tribology issues resulting from the absence of contact, the small sensitivity to the working environment, the wide possibility of tuning even during operation, the predictability of the behavior, the smaller mass compared with AMBs, and the failsafe capability. The aim of the present paper is to describe a design methodology adopted to develop electromagnetic dampers to be installed in aero-engines. The procedure has been validated using a reduced scale laboratory test rig. The same approach has then been adopted to design the electromagnetic dampers for real civil aircraft engines. The results in terms of achievable vibration reductions, mass, and overall dimensions are hence presented. A trade-off between the various proposed solutions has been carried out evaluating quantitative performance parameters together with qualitative aspects that this “more electric” technology implies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.