Binding of five human plasma proteins (IgG, serum albumin, α(1)-acid glycoprotein, holo-transferrin, α(1)-antitrypsin) to ultra high molecular weight polyethylene wear particles (0.1-10 μm) isolated from hip periprosthetic tissues was studied in vitro. All tested plasma proteins were bound to wear particles in a similar way indicating irreversible binding. Analogous interaction was found also between GUR 4120 particles (diameter ∼250 μm) and two tested plasma proteins (human serum albumin and α(1)-acid glycoprotein). The binding was not affected by pH of a buffer or the isoelectric point of bound proteins; thus it was apparently of clearly hydrophobic nature. We hypothesize that the binding causes some unfolding of the bound proteins, thus exposing new determinants with which sensitive cells may react. This could be a mechanism by which polyethylene wear particles trigger, for example, macrophages activity and thence initiate aseptic inflammation and cause the failure of total joint replacements. Results can contribute to the choice of a convenient construction type of prostheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.