Ghana's pursuit of socio-economic growth has necessitated joining the information communication technology (ICT) revolution, thus increasing the consumption and obsolescence rate of electrical and electronic equipment (EEE) and the creation of what is popularly called e-waste. The absence of legislation governing its importation and disposal, combined with the dynamics of Accra's urban economy, including neo-liberal policies and lack of formal job opportunities, has triggered people's ingenuity to engage in novel occupations such as e-waste recycling. Though a lucrative strategy, it comes with a price for those involved: environmental health risks, a fact well articulated by a burgeoning literature. Nevertheless, little empirical evidence exists relating to this perceived relationship. Using questionnaires, FGDs and in-depth interviews, this study fills the lacuna. The findings reveal that the mean daily income of an e-waste worker is GH¢, far above the daily minimum wage of GH¢·. Despite the positives, the findings also show that the environment and health can be compromised.
Extreme weather events pose significant threats to urban health in low-and middle-income countries, particularly in sub-Saharan Africa where there are systemic health challenges. This paper investigates health system vulnerabilities associated with flooding and extreme heat, along with strategies for resilience building by service providers and community members, in Accra and Tamale, Ghana. We employed field observations, rainfall records, temperature measurements, and semi-structured interviews in health facilities within selected areas of the cities. Results indicate that poor building conditions, unstable power supply, poor sanitation and hygiene, and the built environment reduce access to healthcare for residents of poor urban areas.Health facilities are sited in low-lying areas with poor drainage systems and can be 6°C warmer at night than reported by official records from nearby weather stations. This is due to a combination of greater thermal inertia of the buildings and the urban heat island effect. Flooding and extreme heat interact with socioeconomic conditions to impact physical infrastructure and disrupt community health as well as health facility operations. Community members and health facilities make infrastructural and operational adjustments to reduce extreme weather stress and improve healthcare provision to clients. These measures include mobilisation of residents to clear rubbish and unclog drains; elevating equipment to protect it from floods; improving ventilation during extreme heat; and using alternative power sources for emergency surgery and storage during outages. Stakeholders recommend additional actions to manage flood and heat impacts on health in their cities, such as, improving the capacity of drainage systems to carry floodwaters, and routine temperature monitoring to better manage heat in health facilities.Finally, more timely and targeted information systems and emergency response plans are required to ensure preparedness for extreme weather events in urban areas.
The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.