The Rho GTPases are a family of molecular switches that are critical regulators of signal transduction pathways in eukaryotic cells. They are known principally for their role in regulating the cytoskeleton, and do so by recruiting a variety of downstream effector proteins. Kinases form an important class of Rho effector, and part of the biological complexity brought about by switching on a single GTPase results from downstream phosphorylation cascades. Here we focus on our current understanding of the way in which different Rho-associated serine/threonine kinases, denoted PAK (p21-activated kinase), MLK (mixed-lineage kinase), ROK (Rho-kinase), MRCK (myotonin-related Cdc42-binding kinase), CRIK (citron kinase) and PKN (protein kinase novel), interact with and are regulated by their partner GTPases. All of these kinases have in common an ability to dimerize, and in most cases interact with a variety of other proteins that are important for their function. A diversity of known structures underpin the Rho GTPase-kinase interaction, but only in the case of PAK do we have a good molecular understanding of kinase regulation. The ability of Rho GTPases to co-ordinate spatial and temporal phosphorylation events explains in part their prominent role in eukaryotic cell biology.
Previously, we showed PAK-PIX-GIT targets and regulates focal adhesions; here, we uncover a different function for the complex at the centrosome. Active PAK1 is particularly evident in mitosis and phosphorylates the centrosomal adaptor GIT1 on serine 517. Interestingly, direct centrosome targeting activates the kinase via a process not requiring Rho GTPases; excision of the centrosome prevents this activation. Once activated, PAK1 dissociates from PIX/GIT but can bind to and phosphorylate the important centrosomal kinase Aurora-A. PAK1 promotes phosphorylation of Aurora-A on Thr288 and Ser342, which are key sites for kinase activation in mitosis. In vivo PAK activation causes an accumulation of activated Aurora-A; conversely, when betaPIX is depleted or PAK is inhibited, there is a delay in centrosome maturation. These observations may underlie reported effects of active PAK on cells, including histone H3 phosphorylation, alterations in centrosome number, and progression through mitosis.
Melanoma chondroitin sulphate proteoglycan (MCSP) is a cell-surface antigen that has been implicated in the growth and invasion of melanoma tumours. Although this antigen is expressed early in melanoma progression, its biological function is unknown. MCSP can stimulate the integrin-alpha4 beta1-mediated adhesion and spreading of melanoma cells. Here we show that stimulated MCSP recruits tyrosine-phosphorylated p130 cas, an adaptor protein important in tumour cell motility and invasion. MCSP stimulation also results in a pronounced activation and recruitment of the Rho-family GTPase Cdc42. MCSP-induced spreading of melanoma cells is dependent upon active Cdc42, a Cdc42-associated tyrosine kinase (Ack-1) and tyrosine phosphorylation of p130cas. Furthermore, vectors inhibiting Ack-1 or Cdc42 expression and/or function abrogate MCSP-induced tyrosine phosphorylation and recruitment of p130cas. Our findings indicate that MCSP may modify tumour growth or invasion by a unique signal-transduction pathway that links Cdc42 activation to downstream tyrosine phosphorylation and subsequent cytoskeletal reorganization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.