A new extended-release buprenorphine (XR), an FDA-indexed analgesic, has recently become available to the laboratoryanimal community. However, the effectiveness and dosing of XR has not been extensively evaluated for rats. We investigatedXR’s effectiveness in attenuating postoperative hypersensitivity in a rat incisional pain model. We hypothesized that highdose of XR would attenuate mechanical and thermal hypersensitivity more effectively than the low dose of XR in this model. We performed 2 experiments. In experiment 1, male adult Sprague–Dawley rats (n = 31) were randomly assigned to 1 of the 4 treatment groups: 1) saline (saline, 0.9% NaCl, 5 mL/kg, SC, once); 2) sustained-release buprenorphine (Bup-SR; 1.2 mg/kg, SC, once), 3) low-dose extended-release buprenorphine (XR-Lo; 0.65 mg/kg, SC, once), and 4) high-dose extended-releasebuprenorphine (XR-Hi; 1.3 mg/kg, SC, once). After drug administration, a 1 cm skin incision was made on the plantar hind paw under anesthesia. Mechanical and thermal hypersensitivity were evaluated 1 d before surgery (D-1), 4 h after surgery (D0), and for 3 d after surgery (D1, D2, and D3). In experiment 2, plasma buprenorphine concentration (n = 39) was measured at D0, D1, D2, and D3. Clinical observations were recorded daily, and a gross necropsy was performed on D3. Mechanical and thermal hypersensitivity were measured for 3 d (D0-D3) in the saline group. Bup-SR, XR-Lo, and XR-Hi effectively attenuated mechanical hypersensitivity for D0-D3. Plasma buprenorphine concentrations remained above 1 ng/mL on D0 and D1 in all treatment groups. No abnormal clinical signs were noted, but injection site reactions were evident in the Bup-SR (71%), XR-Lo (75%), and XR-Hi (87%) groups. This study indicates that XR-Hi did not attenuate hypersensitivity more effectivelythan did XR-Lo in this model. XR 0.65 mg/kg is recommended to attenuate postoperative mechanical hypersensitivity for upto 72 h in rats in an incisional pain model.
This study investigated whether the use of commercially available diet gels prevented the postoperative weight loss associated with major survival surgery in mice. C57BL/6 mice were divided into 3 groups (n = 9 per group) that received moistened chow pellets alone or with one of 2 commercially available diet gels. Mice began receiving the test diets 3 d before surgery (baseline) and were weighed daily for 7 d after surgery. On day 0, mice underwent ventral midline laparotomy, during which the intestines were manipulated for 2 min and a segment of jejunum was briefly clamped. Compared with the baseline value for the same group, body weights for the mice that received moistened chow only were significantly lower on all postoperative days (days 1 through 7). In contrast, body weights of mice that received both moistened chow and diet gel differed from baseline only on days 2 and 3 for one product and were never different from baseline for the other product. This study indicates that the combination of diet gel and moistened chow prevented or mitigated postoperative weight loss after a laparotomy procedure in mice.
Information on the effectiveness of a new long-lasting buprenorphine formulation, extended-release buprenorphine, in the neonatal rat is very limited. This study compares whether a high dose of extended-release buprenorphine (XR-Hi) attenuates thermal hypersensitivity for a longer period than a low dose of extended-release buprenorphine (XR-Lo) in a neonatal rat incisional pain model. Two experiments were performed. Experiment one: Male and female postnatal day-5 rat pups (n = 38) were randomly assigned to 1 of 4 treatment groups and received a subcutaneous administration of one of the following: 1) 0.9%NaCl (Saline), 0.1 mL; 2) sustained release buprenorphine (Bup-SR), 1 mg/kg; 3) XR-Lo, 0.65 mg/kg; and 4) XR-Hi, 1.3 mg/kg. Pups were anesthetized with sevoflurane in 100% O2 and a 5 mm long skin incision was made over the left lateral thigh and underlying muscle dissected. The skin was closed with surgical tissue glue. Thermal hypersensitivity testing (using a laser diode) and clinical observations were conducted 1 hour (h) prior to surgery and subsequently after 1, 4, 8, 24, 48, 72 h of treatment. Experiment two: The plasma buprenorphine concentration level was evaluated at 1, 4, 8, 24, 48, 72 h on five-day-old rat pups. Plasma buprenorphine concentration for all treatment groups remained above the clinically effective concentration of 1 ng/mL for at least 4 h in the Bup-SR group, 8 h in XR-Lo and 24 h in XR-Hi group with no abnormal clinical observations. This study demonstrates that XR-Hi did not attenuate postoperative thermal hypersensitivity for a longer period than XR-Lo in 5-day-old rats; XR-Hi attenuated postoperative thermal hypersensitivity for up to 4 h while Bup-SR and XR-Lo for at least 8 h in this model.
Buprenorphine is perhaps the most prescribed analgesic for management of postoperative pain in mice. Although various buprenorphine formulations are effective in commonly used immunocompetent mouse strains, a knowledge gap exists regarding its efficacy in immunodeficient mice. Here we used a plantar incision to evaluate the efficacy of 3 buprenorphine formulations for attenuating postoperative mechanical and thermal hypersensitivity in the immunodeficient NSG mouse strain. We also characterized the pharmacokinetics of these formulations over a 72-h period. We hypothesized that all 3 buprenorphine formulations evaluated—the standard preparation and 2 extended-release products (Bup-HCl, Bup-ER, and Bup-XR, respectively)—would attenuate postoperative mechanical and thermal hypersensitivity resulting from a plantar incision in NSG mice. Male and female NSG mice (n = 48) were allocated to 4 treatment groups: saline (0.9% NaCl, 5 mL/kg SC once); Bup-HCl (0.1 mg/kg SC, BID for 2 d); Bup-ER (1.0 mg/kg SC once); and Bup-XR (3.25 mg/kg SC once). Mechanical and thermal hypersensitivity assessments were conducted 24 h before surgery and at 4, 8, 24, 48, and 72 h afterward. All groups of mice showed mechanical and thermal hypersensitivity within the first 24 h after surgery. Behavioral pain indicators (guarding, toe-touching [intermittent partial weight bearing], licking the incision, vocalizations) were observed in some mice from each group at every postoperative time point. Plasma buprenorphine was measured in a separate group of mice and concentrations surpassed the suggested therapeutic level (1.0 ng/mL) for less than 4 h for Bup-HCl, for at least 24 h for Bup-ER, and for 72 h for Bup-XR. Our results indicate that at the dosages studied, these buprenorphine formulations do not adequately attenuate postoperative mechanical and thermal hypersensitivity in the plantar incisional model in NSG mice. These findings support the need for strain-specific analgesic protocols for mice used in research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.