The information paradox can be realized in anti-de Sitter spacetime joined to a Minkowski region. In this setting, we show that the large discrepancy between the von Neumann entropy as calculated by Hawking and the requirements of unitarity is fixed by including new saddles in the gravitational path integral. These saddles arise in the replica method as complexified wormholes connecting different copies of the black hole. As the replica number n → 1, the presence of these wormholes leads to the island rule for the computation of the fine-grained gravitational entropy. We discuss these replica wormholes explicitly in two-dimensional Jackiw-Teitelboim gravity coupled to matter.
We generalize the T T deformation of CFT 2 to higher-dimensional large-N CFTs, and show that in holographic theories, the resulting effective field theory matches semiclassical gravity in AdS with a finite radial cutoff. We also derive the deformation dual to arbitrary bulk matter theories. Generally, the deformations involve background fields as well as CFT operators. By keeping track of these background fields along the flow, we demonstrate how to match correlation functions on the two sides in some simple examples, as well as other observables.
Bulk scalar field: φBoundary value:CFT source:Bulk on-shell action:
A quantum extremal island suggests that a region of spacetime is encoded in the quantum state of another system, like the encoding of the black hole interior in Hawking radiation. We study conditions for islands to appear in general spacetimes, with or without black holes. They must violate Bekenstein’s area bound in a precise sense, and the boundary of an island must satisfy several other information-theoretic inequalities. These conditions combine to impose very strong restrictions, which we apply to cosmological models. We find several examples of islands in crunching universes. In particular, in the four-dimensional FRW cosmology with radiation and a negative cosmological constant, there is an island near the turning point when the geometry begins to recollapse. In a two-dimensional model of JT gravity in de Sitter spacetime, there are islands inside crunches that are encoded at future infinity or inside bubbles of Minkowski spacetime. Finally, we discuss simple tensor network toy models for islands in cosmology and black holes.
Charge Transfer Inefficiency (CTI) due to radiation damage above the Earth's atmosphere creates spurious trailing in Hubble Space Telescope (HST) images. Radiation damage also creates unrelated warm pixels -but these happen to be perfect for measuring CTI. We model CTI in the Advanced Camera for Surveys (ACS)/Wide Field Channel and construct a physically motivated correction scheme. This operates on raw data, rather than secondary science products, by returning individual electrons to pixels from which they were unintentionally dragged during readout. We apply our correction to images from the HST Cosmic Evolution Survey (COSMOS), successfully reducing the CTI trails by a factor of ∼30 everywhere in the CCD and at all flux levels. We quantify changes in galaxy photometry, astrometry and shape. The remarkable 97 per cent level of correction is more than sufficient to enable a (forthcoming) reanalysis of downstream science products and the collection of larger surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.