A novel detection chain, based on 8 Silicon Photomultipliers (forming a wide-area custom-made detection probe) and on a time-to-digital converter, was developed to improve the signal level in multi-wavelength (635-1060 nm) time domain optical mammography. The performances of individual components and of the overall chain were assessed using established protocols (BIP and MEDPHOT). The photon detection efficiency was improved by up to 3 orders of magnitude, and the maximum count rate level was increased by a factor of 10 when compared to the previous system, based on photomultiplier tubes and conventional time-correlated single-photon counting boards. In the estimate of optical parameters, the novel detection chain provides performances comparable to the previous system, widely validated in clinics, but with higher signal level, higher robustness, and at a lower price per channel, thus targeting important requirements for clinical applications.
. Significance : Multi-laboratory initiatives are essential in performance assessment and standardization—crucial for bringing biophotonics to mature clinical use—to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. Aim : The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. Approach : The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). Results : This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of over 1 h, and day-to-day reproducibility of . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. Conclusions : This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset—available soon in an open data repository—can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.
Two main bottlenecks prevent time-domain diffuse optics instruments to reach their maximum performances, namely the limited light harvesting capability of the detection chain and the bounded data throughput of the timing electronics. In this work, for the first time to our knowledge, we overcome both those limitations using a probe-hosted large area silicon photomultiplier detector coupled to high-throughput timing electronics. The system performances were assessed based on international protocols for diffuse optical imagers showing better figures with respect to a state-of-the-art device. As a first step towards applications, proof-of-principle in-vivo brain activation measurements demonstrated superior signal-to-noise ratio as compared to current technologies.
A recent upgrade of the time domain multi-wavelength optical mammograph developed by Politecnico di Milano achieved good performance in laboratory tests [Biomed. Opt. Express 9, 755 (2018).10.1364/BOE.9.000755]. However, it proved unsatisfactory when in vivo measurements were finally performed. That led to a further upgrade, including the replacement of the time-to-digital converter with a new model, and the related set-up changes. The new instrument version offers improved laboratory performance (as assessed through established protocols: BIP and MEDPHOT) and good in vivo performance (extension of the scanned breast area, repeatability, consistency of estimated tissue composition with physiology). Besides introducing the new set-up and detailing its laboratory and in vivo performance, we highlight the importance of systematic in vivo testing before entering clinical trials.
Near-infrared diffuse optical tomography is a non-invasive photonics-based imaging technology suited to functional brain imaging applications. Recent developments have proved that it is possible to build a compact time-domain diffuse optical tomography system based on silicon photomultipliers (SiPM) detectors. The system presented in this paper was equipped with the same eight SiPM probe-hosted detectors, but was upgraded with six injection fibers to shine the sample at several points. Moreover, an automatic switch was included enabling a complete measurement to be performed in less than one second. Further, the system was provided with a dual-wavelength (670 n m and 820 n m ) light source to quantify the oxy- and deoxy-hemoglobin concentration evolution in the tissue. This novel system was challenged against a solid phantom experiment, and two in-vivo tests, namely arm occlusion and motor cortex brain activation. The results show that the tomographic system makes it possible to follow the evolution of brain activation over time with a 1 s -resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.