Free‐roaming domestic cats are a major anthropogenic source of morbidity and mortality to wild birds and mammals in the United States. Permitted wildlife rehabilitators routinely treat cat‐caused injuries. However, extent of these activities is under‐reported in the scientific literature. To determine incidence, age class, mortality, diversity and frequency of species affected, nature of injuries, time in care, and temporal and geospatial trends associated with interactions between free‐roaming cats and wildlife, we conducted a retrospective analysis on 20,921 records from small birds and mammals presented to the Wildlife Center of Virginia (WCV), USA between 2000 and 2010. Cat interaction was the second greatest cause of small‐mammal admissions (14.8%), fourth greatest cause of mammal mortality (70.8%), fourth greatest cause of bird admissions (13.7%), and second greatest cause of avian mortality (80.8%). Eighty‐three species were admitted following interactions with cats. Age of wildlife admitted following cat interaction varied by class; juvenile mammals were captured most frequently (40.5%), followed by neonates (34%), then adults (25.5%). However, adults were documented most frequently in birds (42.7%), followed by juveniles (37.2%), then nestlings (20.1%). Birds were more likely to have interactions with cats in rural areas, whereas degree of urbanization did not differ for mammals. Eighty‐eight percent of cat interactions occurred between April and September, indicating a strong seasonal trend. Our findings indicate that free‐roaming cats substantially contribute to admissions in a wildlife rehabilitation hospital and even with veterinary intervention, release potential is limited. Reducing the number of free‐roaming cats will reduce interactions with wildlife and decrease the need for medical assistance. © 2016 The Wildlife Society.
Approximately 63% of US households have at least one pet, a large percentage of which are considered family members. Pet owners can derive substantial physical and psychological benefits from interaction with companion animals. However, pet ownership is not without risks; zoonotic diseases are increasingly drawing the attention of healthcare professionals, policy makers and the general public. While zoonoses of 'traditional' pets are widely recognized and their prevention and treatment factors are generally known, the growing popularity of 'non-traditional' pets has the potential to facilitate human exposure to novel zoonoses. However, the greatest risk of zoonoses probably arises from animals taken directly from the wild to serve as pets. Non-governmental organizations, state veterinary associations and others have been calling for increased regulation of animal imports, some proposing that all 'exotics' be banned from the pet trade. Because zoonotic diseases of companion animals are influenced by interacting factors of ecological, technical, socio-economic, and political origin, efforts to minimize their impact need be multi-dimensional, simultaneously addressing both the ecological and socio-political drivers of disease emergence and transmission. This study is intended to serve as a primer for animal care professionals seeking to engage with policy makers and the pet industry on the prevention of companion animal zoonoses. We provide background on the human-animal bond, risks of zoonoses associated with groups of companion animals, and the public policy context, as well as identify the factors needed to build a comprehensive approach to companion animal zoonoses risk management. Also included are examples of innovative, non-regulatory initiatives designed to limit the spread and impact of companion animal zoonoses, including a reptile salmonella poster, the National Reptile Improvement Plan, Habitattitude campaign, Pet Zoonoses Committee, and a wildlife disease surveillance initiative known as Project TripWire.
The emerging fields of citizen science and gamification reformulate scientific problems as games or puzzles to be solved. Through engaging the wider non-scientific community, significant breakthroughs may be made by analyzing citizen-gathered data. In parallel, recent advances in virtual reality (VR) technology are increasingly being used within a scientific context and the burgeoning field of interactive molecular dynamics in VR (iMD-VR) allows users to interact with dynamical chemistry simulations in real time. Here, we demonstrate the utility of iMD-VR as a medium for gamification of chemistry research tasks. An iMD-VR "game" was designed to encourage users to explore the reactivity of a particular chemical system, and a cohort of 18 participants was recruited to playtest this game as part of a user study. The reaction game encouraged users to experiment with making chemical reactions between a propyne molecule and an OH radical, and "molecular snapshots" from each game session were then compiled and used to map out reaction pathways. The reaction network generated by users was compared to existing literature networks demonstrating that users in VR capture almost all the important reaction pathways. Further comparisons between humans and an algorithmic method for guiding molecular dynamics show that through using citizen science to explore these kinds of chemical problems, new approaches and strategies start to emerge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.