Equinatoxin II (EqtII) and Fragaceatoxin C (FraC) are pore-forming toxins (PFTs) from the actinoporin family that have enhanced membrane affinity in the presence of sphingomyelin (SM) and phase coexistence in the membrane. However, little is known about the effect of these proteins on the nanoscopic properties of membrane domains. Here, we used combined confocal microscopy and force mapping by atomic force microscopy to study the effect of EqtII and FraC on the organization of phase-separated phosphatidylcholine/SM/cholesterol membranes. To this aim, we developed a fast, high-throughput processing tool to correlate structural and nano-mechanical information from force mapping. We found that both proteins changed the lipid domain shape. Strikingly, they induced a reduction in the domain area and circularity, suggesting a decrease in the line tension due to a lipid phase height mismatch, which correlated with proteins binding to the domain interfaces. Moreover, force mapping suggested that the proteins affected the mechanical properties at the edge, but not in the bulk, of the domains. This effect could not be revealed by ensemble force spectroscopy measurements supporting the suitability of force mapping to study local membrane topographical and mechanical alterations by membranotropic proteins.
In order to significantly reduce the computing time while, at the same time, keeping the accuracy and precision when determining the local values of the density and effective atomic number necessary for identifying various organic material, including explosives and narcotics, a specialized multi-stage procedure based on a multi-energy computed tomography investigation within the 20–160 keV domain was elaborated. It consisted of a compensation for beam hardening and other non-linear effects that affect the energy dependency of the linear attenuation coefficient (LAC) in the chosen energy domain, followed by a 3D fast reconstruction algorithm capable of reconstructing the local LAC values for 64 energy values from 19.8 to 158.4 keV, and, finally, the creation of a set of algorithms permitting the simultaneous determination of the density and effective atomic number of the investigated materials. This enabled determining both the density and effective atomic number of complex objects in approximately 24 s, with an accuracy and precision of less than 3%, which is a significantly better performance with respect to the reported literature values.
This paper describes a circuit editing procedure in which the authors used a gallium column Focused Ion Beam (FIB) tool to divide a merged 32nm multi-finger planar transistor into two separate operating components. Rather than rely on live imaging or the various endpoint detection techniques commonly used during an active mill, the authors opted for a ‘blind’ dose-driven technique. The paper explains how the authors made multiple attempts on practice material in order to determine the exact beam placement location and the depth of cut required to perform the operation with a minimum of lateral damage. The loss of a pair of poly gate fingers in the middle of the multi-gate structure seemed to have minimal impact on the final electrical parameters and the separate data paths worked per design specifications.
Focused Ion Beam (FIB) success has become more difficult as microchip process technology advances, requiring new techniques for damage control both during the microsurgery procedure and before the finished product can be electrically tested. Ultra thin gate dielectrics, shallower junctions, less ‘white space,’ and new materials surrounding active devices all create additional challenges for imaging, targeting, controlling instantaneous charge damage, and the removal of residual implanted charge. On the macro level, global thinning of bulk silicon housed in hybrid packages is causing new problems with thermal management and mechanical stress. Techniques and procedures used to control electrostatic discharge type damage become ever more critical when working on poorly buffered or isolated device elements, especially from the backside. Implanted gallium and residual charge perturb electrical characteristics, and must be dispersed prior to power-up thru carefully controlled bake steps. Left in place, these FIB-induced perturbations are likely to cause poor functionality or even latchup. The mechanical rigidity and thermal dissipation properties of newer, complex package types must also be restored post-FIB, otherwise cracked silicon or a thermal overload event might be the outcome. In this paper, we will attempt to address some of the common causes of FIB-induced failure on newer silicon and package technologies, and how they might be overcome. FIB techniques and preparatory processes must continue to evolve in order to deal effectively with the problems of direct beam damage, residual charge elimination, and sample stress management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.