Thiol-ene radical coupling is increasingly used for the biofunctionalisation of biomaterials and the formation of 3D hydrogels enabling cell encapsulation. Indeed, thiol-ene chemistry presents interesting features that are particularly attractive for platforms requiring specific reactions of peptides or proteins, in particular in situ, during cell culture or encapsulation: thiol-ene coupling occurs specifically between a thiol and a non-activated alkene (unlike Michael addition); it is relatively tolerant to the presence of oxygen; it can be triggered by light. Despite such interest, little is known about the factors impacting polymer thiol-ene chemistry in situ. Here we explore some of the molecular parameters controlling photoinitiated thiol-ene coupling (with UV and visible light irradiation), with a series of alkenefunctionalised polymer backbones. 1 H NMR spectroscopy is used to quantify the efficiency of couplings, whereas photo-rheology allows correlation to gelation and mechanical properties of the resulting materials. We identify the impact of weak electrolytes in regulating coupling efficiency, presumably via thiol deprotonation and regulation of local diffusion. The conformation of associated polymer chains, regulated by the pH, is also proposed to play an important role in the modulation of both thiol-ene coupling and crosslinking efficiencies. Ultimately, suitable conditions for cell encapsulations are identified for a range of polymer backbones and their impact on cytocompatibility is investigated for cell encapsulation and tissue engineering applications. Overall our work demonstrates the importance of polymer backbone design to regulate thiol-ene coupling and in situ hydrogel formation.
Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). Cells were free to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated two interesting findings: first, although cells dynamically adjust their shapes and migration trajectories in response to different fibrillar environments, their average step speed is minimally affected by the fibre global pattern; secondly, a switch in behaviour was observed when the pattern features approach the upper limit of the cell body’s minor axis, reflecting that cells’ ability to divert from an existing fibre track is limited by the size along the cell body’s minor axis. It is therefore concluded that the upper limit of cell body’s minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.