We have continued to explore the 3,3-dialkyl-5-aryloxindole series of progesterone receptor (PR) modulators looking for new agents to be used in female healthcare: contraception, fibroids, endometriosis, and certain breast cancers. Previously we reported that subtle structural changes with this and related templates produced functional switches between agonist and antagonist properties ( Fensome et al. Biorg. Med. Chem. Lett. 2002, 12, 3487; 2003, 13, 1317 ). We herein report a new functional switch within the 5-(2-oxoindolin-5-yl)-1 H-pyrrole-2-carbonitrile class of compounds. We found that the size of the 3,3-dialkyl substituent is important for controlling the functional response; thus small groups (dimethyl) afford potent PR antagonists, whereas larger groups (spirocyclohexyl) are PR agonists. The product from our optimization activities in cell-based systems and also for kinetic properties in rodents and nonhuman primates was 5-(7-fluoro-3,3-dimethyl-2-oxo-2,3-dihydro-1 H-indol-5-yl)-1-methyl-1 H-pyrrole-2-carbonitrile 27 (WAY-255348), which demonstrated potent and robust activity on PR antagonist and contraceptive end points in the rat and also in cynomolgus and rhesus monkeys including ovulation inhibition, menses induction, and reproductive tract morphology.
Gaucher disease (GD) results from inherited mutations in the lysosomal enzyme βglucocerobrosidase (GCase). Currently available treatment options for Type 1 GD are not efficacious for treating neuronopathic Type 2 and 3 GD due to their inability to cross the bloodbrain barrier. In an effort to identify small molecules which could be optimized for CNS penetration we identified tamoxifen from a high throughput phenotypic screen on Type 2 GD patient-derived fibroblasts which reversed the disease phenotype. Structure activity studies around this scaffold led to novel molecules that displayed improved potency, efficacy and reduced estrogenic/antiestrogenic activity compared to the original hits. Here we present the design, synthesis and structure activity relationships that led to the lead molecule Compound 31.
Chronic ethanol exposure affects the glutamatergic system in several brain reward regions such as the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger transporter (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol preferring (P) rats. Moreover, previous study from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis.In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC100093 attenuated ethanol-induced increases in fat droplet content in the liver.These findings suggest that MC-100093 might be a potential lead compound to attenuate ethanol-induced dysfunction in glutamatergic system and liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.