Edible wild ascomycetes Morchella rotunda, M. vulgaris and M. conica were cultivated in liquid static and agitated flasks of sucrose and molasses substrates with a C/N ratio of 20 and 25. The impact of four substrates on the production and quality characteristics of morels was examined. Evaluation included determination of the dry mycelial mass, intra-cellular (IPS) and extra-cellular (EPS) polysaccharides, total phenolic (TPC) and antioxidant (TAC) components, proteins, as well as the degree of phenolic content reduction and decolorization of molasses. The influence of agitation conditions was also evaluated. Results showed that substrate consumption, biomass formation and secondary metabolites production were substrate, species, and C/N ratio dependent. Among species, M. conica achieved the maximum biomass (18.16 g/L) and IPS (4.8 g/L) production and significant phenolic reduction (56.6%) and decolorization (26.7%). The maximum EPS (3.94 g/L) was noted by M. rotunda, whereas TPC (32.2 mg/g), TAC (6.0 mg/g) and cellular protein (7.6% w/w) were produced in sufficient amounts. These results strongly support the use of Morchella mushrooms as a biological detoxification agent of molasses in liquid fermentations and indicate their nutritional and medicinal value.
Pleurotus pulmonarius mushroom was cultivated on liquid cultures with olive mill wastewaters (OMWs) of initial phenolic compound concentrations of 0 (control), 1, 2 and 3 g/L and glucose at initial concentrations of 40 and 60 g/L. The ability of the fungus to grow on media containing toxic compounds enriched with glucose was assessed through biomass production, glucose consumption, polysaccharide (IPS) accumulation and total cellular lipids biosynthesis, while the total phenolic compounds (TPC) and antioxidant component monitoring were also assessed during a 43-day fermentation. An analysis of the total simple sugar composition of IPS and the total fatty acid composition of lipids was performed. The phenolic reduction and media decolorization were also monitored. Results showed that the addition of glucose in OMW-based media had a positive effect on biomass, IPS and lipid production and increased the unsaturated fatty acids and TPC concentration. The maximum recorded values were the following: biomass 32.76 g/L, IPS 4.38 g/L (14.70%, w/w in dry weight), lipids 2.85 g/L (11.69%, w/w in dry weight). The mycelial lipids were unsaturated and dominated by linoleic acid, whereas IPS were composed mainly of glucose. Significant phenolic compound reduction (87–95%) and color removal (70–85%) occurred. Results strongly suggest the potentiality of P. pulmonarius utilization in the OMW treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.