The characteristics and mechanisms of synchronized firing in developing networks of cultured cortical neurons were studied using multisite recording through planar electrode arrays (PEAs). With maturation of the network (from 3 to 40 d after plating), the frequency and propagation velocity of bursts increased markedly (approximately from 0.01 to 0.5 Hz and from 5 to 100 mm/sec, respectively), and the sensitivity to extracellular magnesium concentration (0-10 mM) decreased. The source of spontaneous bursts, estimated from the relative delay of onset of activity between electrodes, varied randomly with each burst. Physical separation of synchronously bursting networks into several parts using an ultraviolet laser, divided synchronous bursting into different frequencies and phases in each part. Focal stimulation through the PEA was effective at multiple sites in eliciting bursts, which propagated over the network from the site of stimulation. Stimulated bursts exhibited both an absolute refractory period and a relative refractory period, in which partially propagating bursts could be elicited. Periodic electrical stimulation (at 1 to 30 sec intervals) produced slower propagation velocities and smaller numbers of spikes per burst at shorter stimulation intervals. These results suggest that the generation and propagation of spontaneous synchronous bursts in cultured cortical neurons is governed by the level of spontaneous presynaptic firing, by the degree of connectivity of the network, and by a distributed balance between excitation and recovery processes.
Networks of cultured cortical neurones exhibit regular, synchronized, propagating bursts which are synaptically mediated, and which are hypothesized to play a part in activity-dependent formation of connections during development in vivo. The relationship between the strength of synaptic connections and the characteristics of synchronized propagating bursting, however, is unclear. Modification of synchronized activity in cortical cultures in response to electrical stimulation was examined using multisite electrode array recording. By measuring the response of the network to weak, localized, test stimulation (TS), we observed a potentiation of activity following a relatively stronger inducing stimulation (IS). This potentiation was evident as an increased probability of eliciting bursts by TS, an increased frequency of spontaneous bursts and number of spikes per burst, and increased speed of burst propagation, and it lasted for at least 20 min. Changing the parameters of IS revealed that high frequency tetanic stimulation is not necessary to induce potentiation, while it is essential for IS to produce a regeneratively propagating burst. The results provide a direct demonstration of modification of both the spatial and temporal characteristics of synchronized network activity, and suggest an important physiological role for propagating synchronized bursting, as a mechanism for inducing plastic modifications in the developing cortex.
Experimental investigation of the dynamics of biological networks is a fundamental step towards understanding how the nervous system works. Spontaneous activity in cultured networks of cortical neurons has been investigated by using a multisite recording technique with planar electrode arrays. In these networks, the spatiotemporal firing patterns were studied in the presence of different extracellular solutions. Transitions from asynchronous firing dynamics to synchronous firing dynamics were observed when the extracellular Ca2+ concentration was increased from 0.1 mM to 1 mM. Addition of extracellular Mg2+ reduced the spontaneous activity at any Ca2+ concentration, and an increase in the extracellular K+ concentration enhanced the frequency of periodical synchronous bursts. N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor antagonists inhibited synchronous activity. A spatiotemporal analysis of the data has been performed, and the properties of the network such as the synchronization and the periodicity have been quantified in order to clarify how variations of intrinsic parameters of the network can induce structural transitions in the neural dynamics. This experimental study is a possible approach to investigate the computational properties of a neuronal network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.