Propionibacterium acnes and Staphylococcus aureus are cutaneous pathogens that have become increasingly resistant to antibiotics. We sought to determine if chitosan, a polymer of deacetylated chitin, could be used as a potential treatment against these bacteria. We found that higher molecular weight chitosan had superior antimicrobial properties compared to lower molecular weights, and that this activity occurred in a pH dependent manner. Electron and fluorescence microscopy revealed that chitosan forms aggregates and binds to the surface of bacteria, causing shrinkage of the bacterial membrane from the cell wall. Of special relevance, clinical isolates of P. acnes were vulnerable to chitosan, which could be combined with benzoyl peroxide for additive antibacterial effect. Chitosan also demonstrated significantly less cytotoxicity to monocytes than benzoyl peroxide. Overall, chitosan demonstrates many promising qualities for treatment of cutaneous pathogens.
In the present study, an environmentally benign, efficient, and solvent-free procedure was developed for the synthesis of 1,2-azidoalcohols by the regioselective ring opening of some epoxides with sodium azide (NaN 3 ) in the presence of an acetic acid functionalized imidazolium salt [Cmmim]BF 4 or [Cmmim]Br as a green and Brønsted acidic ionic liquid (BAIL) catalyst under mild and neutral reaction conditions at 60 C. The remarkable features of this procedure are excellent regioselectivity, simple work-up procedure, high yields of products, short reaction times, and ease of recyclability of ionic liquids.
Zataria multiflora essential oil (ZEO) is a natural complex of compounds with a high apoptotic potential against breast cancer cells and minor toxicity toward normal cells; however, similar to many essential oils, ZEO utilization in pharmaceutical industries has limitations due to its labile and sensitive ingredients. Nanoemulsification based on natural polymers is one approach to overcome this issue. In this study, an apple pectin-ZEO nanoemulsion (AP-ZEONE) was prepared and its morphology, FTIR spectra, and physical properties were characterized. Furthermore, it was shown that AP-ZEONE substantially suppresses the viability of MDA-MB-231, T47D, and MCF-7 breast cancer cells. AP-ZEONE significantly induced apoptotic morphological alterations and DNA fragmentation as confirmed by fluorescent staining and TUNEL assay. Moreover, AP-ZEONE induced apoptosis in MDA-MB-231 cells by loss of mitochondrial membrane potential (ΔΨm) associated with the accumulation of reactive oxygen species (ROS), G2/M cell cycle arrest, and DNA strand breakage as flow cytometry, DNA oxidation, and comet assay analysis revealed, respectively. Spectroscopic and computational studies also confirmed that AP-ZEONE interacts with genomic DNA in a minor groove/partial intercalation binding mode. This study demonstrated the successful inhibitory effect of AP-ZEONE on metastatic breast cancer cells, which may be beneficial in the therapy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.