The 45S5 bioglass uttering Class A bioactivity promotes both osteoconduction as well as osteoinduction. Though one of the higher reactive bioactive materials known with structural and physiological influence upon ionic modulation, poor mechanical properties are perceived. The possible solution to overcome the weak stability is to choose material's composition that provides retained bioactivity and improved mechanical stability. Meanwhile, primary burst out of Na + ions increases the local pH, harms cell life, and acts as a well-known disruptive modifying species that weakens the bioactive glass network, decreasing network connectivity, showing faster degradation and lowering mechanical stability. Therefore, in this study, more detailed systematic exploration on structural influence of sodium monovalent cation and its behavior on physiological environment was genuinely studied and reported that bioactivity of the bioactive glass can be highly achieved even without Na + ions. The result exhibits benefits of sodium free bioactive glass (denoted as No Na + BG) over Na + BG and exhibits improved mechanical stability and also possible degradability, having in-built apatite phase even before immersion in simulated body fluid (SBF). Also, sodium free bioglass proved as a superior candidate for erythrocyte compatibility with rapid clotting tendency on interaction with blood and a promising replacement for 45S5 bioglass in all aspects especially in mechanical stability view, which can withstand more than 5 months in phosphate buffer saline (PBS).
Designing a biomaterial with excellent bioactivity, biocompatibility, mechanical strength, porosity, and osteogenic properties is essential to incorporate therapeutic agents in order to promote efficient bone regeneration. The work intended to prepare bioactive glass with tailor-made equal Ca/P (CP) ratio to obtain clinophosinaite (Cpt) as dominant phase. Clinophosinaite (Na 3 CaPSiO 7 ) is one of the rarest phases of bioactive glass (BG), which is supposed to play key role in bioactivity. The novelty of this work is to track the required sintering temperature to attain equimolar calcium phosphate-containing clinophosinaite phase and its behavior. Further, its consequent physicochemical and biological properties were analyzed. Phase transition from Rhenanite to Cpt, and later the Cpt emerged as dominant phase with increase of calcination temperature from 700 to 1000 C was studied. The quantifying evolution of Cpt with Rhenanite over increasing annealing temperature also results with the major morphological modifications. BET analysis confirmed the surface area and porosity (Type-IV mesoporous) were gradually elevated upto 900 C, which had contrary effect on mechanical strength. Formation of hydroxyl carbonate apatite (HCA) layer confirmed the bioactivity of the prepared samples at varying time intervals. The CP samples demonstrated better hemocompatibility in post-immersion (i.e., less than 1% of lysis) when compared with pre-immersion. Enhanced protein adsorption and cumulative release (85%) of Simvastatin (SIM) drug was attained at 900 C treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.