BackgroundA biomarker that is of great interest in relation to adverse cardiovascular events is soluble ST2 (sST2), a member of the interleukin family. Considering that metabolic syndrome (MetS) is accompanied by a proinflammatory state, we aimed to assess the relationship between sST2 and left ventricular (LV) structure and function in patients with MetS.MethodsA multicentric, cross-sectional study was conducted on180 MetS subjects with normal LV ejection fraction as determined by echocardiography. LV hypertrophy (LVH) was defined as an LV mass index greater than the gender-specific upper limit of normal as determined by echocardiography. LV diastolic dysfunction (DD) was assessed by pulse-wave and tissue Doppler imaging. sST2 was measured by using a quantitative monoclonal ELISA assay.ResultsLV mass index (β=0.337, P<0.001, linear regression) was independently associated with sST2 concentrations. Increased sST2 was associated with an increased likelihood of LVH [Exp (B)=2.20, P=0.048, logistic regression] and increased systolic blood pressure [Exp (B)=1.02, P=0.05, logistic regression]. Comparing mean sST2 concentrations (adjusted for age, body mass index, gender) between different LV remodeling patterns, we found the greatest sST2 level in the group with concentric hypertrophy. There were no differences in sST2 concentration between groups with and without LV DD.ConclusionsIncreased sST2 concentration in patients with MetS was associated with a greater likelihood of exhibiting LVH. Our results suggest that inflammation could be one of the principal triggering mechanisms for LV remodeling in MetS.
Background: Metabolic syndrome (MS) is a complex and prevalent disorder. Oxidative stress and inflammation might contribute to the progression of MS. Soluble ST2 (sST2) is an attractive and druggable molecule that sits at the interface between inflammation, oxidative stress and fibrosis. This study aims to analyze the relationship among sST2, oxidative stress, inflammation and echocardiographic parameters in MS patients. Methods: Fifty-eight patients with MS were recruited and underwent physical, laboratory and transthoracic echocardiography examinations. Commercial ELISA and appropriate colorimetric assays were used to quantify serum levels of oxidative stress and inflammation markers and sST2. Results: Circulating sST2 was increased in MS patients and was significantly correlated with the oxidative stress markers nitrotyrosine and 8-hydroxy-2′-deoxyguanosine as well as with peroxide levels. The inflammatory parameters interleukin-6, intercellular adhesion molecule-1 and myeloperoxidase were positively correlated with sST2. Noteworthy, sST2 was positively correlated with left ventricular mass, filling pressures and pulmonary arterial pressures. Conclusion: Circulating levels of sST2 are associated with oxidative stress and inflammation burden and may underlie the pathological remodeling and dysfunction of the heart in MS patients. Our results suggest that sST2 elevation precedes diastolic dysfunction, emerging as an attractive biotarget in MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.