The stability of structures microfabricated in soft elastomeric polymers is an important concern in most applications that use these structures. Although relevant for several applications, the collapse to the ground of high aspect ratio structures (ground collapse) is still poorly understood. The stability of soft microfabricated high aspect ratio structures versus ground collapse was experimentally assessed, and a new model of ground collapse involving adhesion was developed. Sets of posts with diameters from 0.36 to 2.29 microm were fabricated in poly(dimethylsiloxane) and tested in air or immersed in water and ethanol to change the work of adhesion. The critical aspect ratio (the highest length-to-width ratio for which a post is not at risk of collapsing) was determined as a function of the diameter. The critical aspect ratio in air ranged from 2 to 4 and increased with the diameter. Work of adhesion was found to be determinant for and inversely correlated to stability. These results highlight the role played by adhesion and offer the possibility of improving stability by reducing the work of adhesion. The ground collapse model developed accounted for the main features of structure stability. The results indicate that ground collapse can be a limiting factor in the design of soft polymer structures.
Intestinal organoids have emerged as a powerful
in vitro
tool for studying intestinal biology due to their resemblance to
in vivo
tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the
in vivo
-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the
in vivo
cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an
in vivo
-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.