Homologous recombination (HR) serves to repair DNA double-strand breaks and damaged replication forks and is essential for maintaining genome stability and tumor suppression. HR capacity also determines the efficacy of anticancer therapy. Hence, there is an urgent need to better understand all HR proteins and sub-pathways. An emerging protein that is critical for RAD51-mediated HR is RAD51-associated protein 1 (RAD51AP1). Although much has been learned about its biochemical attributes, the precise molecular role of RAD51AP1 in the HR reaction is not yet fully understood. The available literature also suggests that RAD51AP1 expression may be relevant for cancer development and progression. Here, we review the efforts that led to the discovery of RAD51AP1 and elaborate on our current understanding of its biochemical profile and biological function. We also discuss how RAD51AP1 may help to promote cancer development and why it could potentially represent a promising new target for therapeutic intervention.
The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB) models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP) reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid) is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.
RAD51-associated protein 1 (RAD51AP1) is a key protein in the homologous recombination (HR) DNA repair pathway. Loss of RAD51AP1 leads to defective HR, genome instability, and telomere erosion. RAD51AP1 physically interacts with the RAD51 recombinase and promotes RAD51-mediated capture of donor DNA, synaptic complex assembly, and displacement-loop formation when tested with nucleosome-free DNA substrates. In cells, however, DNA is packaged into chromatin, posing an additional barrier to the complexities of the HR reaction. In this study, we show that RAD51AP1 binds to nucleosome core particles (NCPs), the minimum basic unit of chromatin in which approximately two superhelical turns of 147 bp double-stranded DNA are wrapped around one histone octamer with no free DNA ends remaining. We identified a C-terminal region in RAD51AP1, including its previously mapped DNA-binding domain, as critical for mediating the association between RAD51AP1 and both the NCP and the histone octamer. Using in vitro surrogate assays of HR activity, we show that RAD51AP1 is capable of promoting duplex DNA capture and initiating joint-molecule formation with the NCP and chromatinized template DNA, respectively. Together, our results suggest that RAD51AP1 directly assists in the RAD51-mediated search for donor DNA in chromatin. We present a model, in which RAD51AP1 anchors the DNA template through affinity for its nucleosomes to the RAD51-ssDNA nucleoprotein filament.
RAD51 Associated Protein 1 (RAD51AP1) is a key protein in the homologous recombination DNA repair pathway (HR). Loss of RAD51AP1 leads to defective HR, genome instability and telomere erosion. RAD51AP1 physically interacts with the RAD51 recombinase and promotes RAD51-mediated capture of the donor DNA, synaptic complex assembly and displacement-loop formation when tested with synthetic, nucleosome-free DNA substratesin vitro. In cells, however, DNA is packaged into chromatin, posing an additional barrier to the complexities of the HR reaction. How RAD51AP1 functions as an HR activator in the context of chromatin has remained unclear.In this study, we show that RAD51AP1 binds to Nucleosome Core Particles (NCPs). We identified a C-terminal region in RAD51AP1 and its previously mapped DNA binding domain as critical for mediating the association between RAD51AP1 and both the NCP and the histone octamer. We show that RAD51AP1 is capable of promoting duplex DNA capture and initiating joint-molecule formation with the NCP and chromatinized template DNA, respectively. Together, our results suggest that RAD51AP1directlyassists the RAD51-mediated search of donor DNA in chromatin. We present a model, in which RAD51AP1 anchors the DNA template through affinity for its nucleosomes to the RAD51-ssDNA nucleoprotein filament.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.