Transistor structures comprising graphene and sub-wavelength metal gratings hold a great promise for plasmon-enhanced terahertz detection. Despite considerable theoretical effort, little experimental evidence for terahertz plasmons in such structures was found so far. Here, we report an experimental study of plasmons in graphene-insulator-grating structures using Fourier transform spectroscopy in 5-10 THz range. The plasmon resonance is clearly visible above the Drude absorption background even in chemical vapor deposited (CVD) graphene with low carrier mobility ∼ 10 3 cm 2 /(V s). We argue that plasmon lifetime is weakly sensistive to scattering by grain boundaries and macoscopic defects which limits the mobility of CVD samples. Upon placing the grating in close proximity to graphene, the plasmon field becomes tightly bound below the metal stripes, while the resonant frequency is determined by the stripe width but not by grating period. Our results open the prospects of large-area commercially available graphene for resonant terahertz detectors.Graphene-based optoelectronic devices benefit from high-speed operation 1,2 , broadband response 3 , and compatibility with on-chip optical interconnects 4 . Their major drawback is low electromagnetic wave absorbance by a single sheet of graphene. This problem is readily resolved via coupling of incident light to plasmons bound either to adjacent metal nanoparticles 5,6 or to graphene itself 7 . Unlike plasmons in metals, intrinsic graphene plasmons offer ultra-strong field confinement 8 and tuning of resonant frequency with gate voltage 9,10 .Resonant excitation of plasmons in graphene-based photodetectors becomes increasingly difficult when going from infrared to terahertz (THz) range 11 as the plasmon quality factor scales linearly with frequency. Despite considerable effort 12-14 evidence of plasmon-assisted THz detection in graphene are scarce and were reported only for high-quality encapsulated graphene 15 or epitaxial graphene on SiC 16 . Experimental demonstrations of terahertz plasmons in absorbance spectra of graphene, including scalable chemical vapor deposited (CVD) samples, are more numerous [17][18][19] . At the same time, most such experiments dealt with ribbon-patterned where collection of photocurrent is hindered and boundary scattering is enhanced.In this paper, we study the plasmonic properties of a basic building block of graphene-based terahertz detector 13,20 , the CVD graphene-channel field-effect transistor with a grating gate. We find that plasmonic contribution to absorption spectra is pronounced at 5 − 10 THz frequencies despite moderate carrier mobility ∼ 10 3 cm 2 /V s and short momentum relaxation time τ p ∼ 50 fs. We further argue that plasmon lifetime in CVD-graphene (as it enters the quality factor) exceeds the relaxation time as extracted from mobility, in contrast to reports for encapsulated graphene. We find that metal grating placed in immediate vicinity to graphene modifies the resonant plasmon frequencies. In particular, the recipro...
Optical nanoantennas are of great importance for photonic devices and spectroscopy due to their capability of squeezing light at the nanoscale and enhancing light–matter interactions. Among them, nanoantennas made of polar crystals supporting phonon polaritons (phononic nanoantennas) exhibit the highest quality factors. This is due to the low optical losses inherent in these materials, which, however, hinder the spectral tuning of the nanoantennas due to their dielectric nature. Here, active and passive tuning of ultranarrow resonances in phononic nanoantennas is realized over a wide spectral range (≈35 cm−1, being the resonance linewidth ≈9 cm−1), monitored by near‐field nanoscopy. To do that, the local environment of a single nanoantenna made of hexagonal boron nitride is modified by placing it on different polar substrates, such as quartz and 4H‐silicon carbide, or covering it with layers of a high‐refractive‐index van der Waals crystal (WSe2). Importantly, active tuning of the nanoantenna polaritonic resonances is demonstrated by placing it on top of a gated graphene monolayer in which the Fermi energy is varied. This work presents the realization of tunable polaritonic nanoantennas with ultranarrow resonances, which can find applications in active nanooptics and (bio)sensing.
The ability to resolve the polarization of light with on-chip devices represents an urgent problem in optoelectronics. The detectors with polarization resolution demonstrated so far mostly require multiple oriented detectors or movable external polarizers. Here, we experimentally demonstrate the feasibility to resolve the polarization of mid-infrared light with a single chemical-vapor-deposited graphene-channel device with dissimilar metal contacts. This possibility stems from an unusual dependence of photoresponse at graphene–metal junctions on gate voltage and polarization angle. Namely, there exist certain gate voltages providing the polarization-insensitive signal; operation at these voltages can be used for power calibration of the detector. At other gate voltages, the detector features very strong polarization sensitivity, with the ratio of signals for two orthogonal polarizations reaching [Formula: see text]. Operation at these voltages can provide information about polarization angles, after the power calibration. We show that such unusual gate- and polarization-dependence of photosignal can appear upon competition of isotropic and anisotropic photovoltage generation pathways and discuss the possible physical candidates.
Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p–n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p–n junctions. We find a strong positive contribution from junctions to resistance, temperature resistance coefficient, and photoresistivity at cryogenic temperatures T ∼ 20 K. The contribution to these quantities from junctions exceeds strongly the bulk values at uniform channel doping even at small band gaps of ∼10 meV. We further show that positive junction photoresistance is a hallmark of interband tunneling, and not of intraband thermionic conduction. Our results point to the possibility of creating various interband tunneling devices based on bilayer graphene, including steep-switching transistors and selective sensors.
Graphene shows strong promise for the detection of terahertz (THz) radiation due to its high carrier mobility, compatibility with on-chip waveguides and transistors, and small heat capacitance. At the same time, weak reaction of graphene's physical properties on the detected radiation can be traced down to the absence of a band gap. Here, we study the effect of electrically induced band gap on THz detection in graphene bilayer with split-gate p-n junction. We show that gap induction leads to a simultaneous increase in current and voltage responsivities. At operating temperatures of ∼25 K, the responsivity at a 20 meV band gap is from 3 to 20 times larger than that in the gapless state. The maximum voltage responsivity of our devices at 0.13 THz illumination exceeds 50 kV/W, while the noise equivalent power falls down to 36 fW/Hz 1/2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.