A mixed manna contains goods (that everyone likes), bads (that everyone dislikes), as well as items that are goods to some agents, but bads or satiated to others.If all items are goods and utility functions are homothetic, concave (and monotone), the Competitive Equilibrium with Equal Incomes maximizes the Nash product of utilities: hence it is welfarist (determined utility-wise by the feasible set of profiles), single-valued and easy to compute.We generalize the Gale-Eisenberg Theorem to a mixed manna. The Competitive division is still welfarist and related to the product of utilities or disutilities. If the zero utility profile (before any manna) is Pareto dominated, the competitive profile is unique and still maximizes the product of utilities. If the zero profile is unfeasible, the competitive profiles are the critical points of the product of disutilities on the efficiency frontier, and multiplicity is pervasive. In particular the task of dividing a mixed manna is either good news for everyone, or bad news for everyone.We refine our results in the practically important case of linear preferences, where the axiomatic comparison between the division of goods and that of bads is especially sharp. When we divide goods and the manna improves, everyone weakly benefits under the competitive rule; but no reasonable rule to divide bads can be similarly Resource Monotonic. Also, the much larger set of Non Envious and Efficient divisions of bads can be disconnected so that it will admit no continuous selection.
Abstract. We show that the Owen value for TU games with coalition structure can be characterized without additivity axiom similarly as it was done by Young for the Shapley value for general TU games. Our axiomatization via four axioms of efficiency, marginality, symmetry across coalitions, and symmetry within coalitions is obtained from the original Owen's one by replacement of the additivity and null-player axioms via marginality. We show that the alike axiomatization for the generalization of the Owen value suggested by Winter for games with level structure is valid as well.
When utilities are additive, we uncovered in our previous paper [1] many similarities but also surprising differences in the behavior of the familiar Competitive rule (with equal incomes), when we divide (private) goods or bads.The rule picks in both cases the critical points of the product of utilities (or disutilities) on the efficiency frontier, but there is only one such point if we share goods, while there can be exponentially many in the case of bads.We extend this analysis to the fair division of mixed items: each item can be viewed by some participants as a good and by others as a bad, with corresponding positive or negative marginal utilities. We find that the division of mixed items boils down, normatively as well as computationally, to a variant of an all goods problem, or of an all bads problem: in particular the task of dividing the non disposable items must be either good news for everyone, or bad news for everyone.If at least one feasible utility profile is positive, the Competitive rule picks the unique maximum of the product of (positive) utilities. If no feasible utility profile is positive, this rule picks all critical points of the product of disutilities on the efficient frontier.
A mixed manna contains goods (that everyone likes) and bads (that everyone dislikes), as well as items that are goods to some agents, but bads or satiated to others. If all items are goods and utility functions are homogeneous of degree 1 and concave (and monotone), the competitive division maximizes the Nash product of utilities (Gale–Eisenberg): hence it is welfarist (determined by the set of feasible utility profiles), unique, continuous, and easy to compute. We show that the competitive division of a mixed manna is still welfarist. If the zero utility profile is Pareto dominated, the competitive profile is strictly positive and still uniquely maximizes the product of utilities. If the zero profile is unfeasible (for instance, if all items are bads), the competitive profiles are strictly negative and are the critical points of the product of disutilities on the efficiency frontier. The latter allows for multiple competitive utility profiles, from which no single‐valued selection can be continuous or resource monotonic. Thus the implementation of competitive fairness under linear preferences in interactive platforms like SPLIDDIT will be more difficult when the manna contains bads that overwhelm the goods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.