Background: Butyric acid (BA) is a short-chain fatty acid (SCFA) with anti-inflammatory properties, which promotes intestinal barrier function. Medium-chain fatty acids (MCFA), including caproic acid (CA), promote TH1 and TH17 differentiation, thus supporting inflammation. Aim: Since most SCFAs are absorbed in the cecum and colon, the measurement of BA in peripheral blood could provide information on the health status of the intestinal ecosystem. Additionally, given the different immunomodulatory properties of BA and CA the evaluation of their serum concentration, as well as their ratio could be as a simple and rapid biomarker of disease activity and/or treatment efficacy in MS. Methods: We evaluated serum BA and CA concentrations, immune parameters, intestinal barrier integrity and the gut microbiota composition in patients with multiple sclerosis (MS) comparing result to those obtained in healthy controls. Results: In MS, the concentration of BA was reduced and that of CA was increased. Concurrently, the microbiota was depleted of BA producers while it was enriched in mucin-degrading, pro-inflammatory components. The reduced serum concentration of BA seen in MS patients correlated with alterations of the barrier permeability, as evidenced by the higher plasma concentrations of lipopolysaccharide and intestinal fatty acid-binding protein, and inflammation. Specifically, CA was positively associated with CD4+/IFNγ+ T lymphocytes, and the BA/CA ratio correlated positively with CD4+/CD25 high /Foxp3+ and negatively with CD4+/IFNγ+ T lymphocytes. Conclusion: The gut microbiota dysbiosis found in MS is possibly associated with alterations of the SCFA/MCFA ratio and of the intestinal barrier; this could explain the chronic inflammation that characterizes this disease. SCFA and MCFA quantification could be a simple biomarker to evaluate the efficacy of therapeutic and rehabilitation procedures in MS.
Recently, an increasing number of pharmacists had to supply medicinal products based on L. (Cannabaceae), prescribed by physicians to individual patients. Cannabis olive oil preparation is the first choice as a concentrated extract of cannabinoids, even though standardized operative conditions for obtaining it are still not available. In this work, the impact of temperature and extraction time on the concentration of active principles was studied to harmonize the different compounding methods, optimize the extraction process, and reduce the variability among preparations. Moreover, starting from the cannabis inflorescence, the effect of temperature on tetrahydrocannabinolic acid decarboxylation was evaluated. For the analysis, a GC/MS method, as suggested by the Italian Ministry of Health, and a GC/flame ionization detection method were developed, validated, and compared.
The novel adamantane derivative APICA (N-(adamantan-1-yl)-1-pentyl-1H-indole-3-carboxamide) was recently identified as a cannabinomimetic indole of abuse. Despite its novel structure, APICA recalls cannabinomimetic indoles, such as representative member JWH-018.In present study, the effects of APICA (1-3 mg/kg, i.p.) were tested in C57BL/6J mice, in the Tetrad task which includes the assessment of: body temperature; locomotor activity and behavioural reactivity; nociception; motor coordination; declarative memory. Furthermore, pre-treatment with the CB1 antagonist AM251 (3 mg/kg, i.p.) or the CB2 antagonist AM630 (3 mg/kg, i.p.) was carried out to characterize APICA activity.Our results show that APICA was able to dose-dependently decrease locomotor activity and behavioural reactivity in the open field, whereas only the highest dose was able to induce hypothermia, analgesia, motor incoordination and recognition memory impairment, with respect to vehicle (p < 0.01; p < 0.001).The pretreatment with the CB1 antagonist AM251 elicited an increase in body temperature, total distance travelled in the open field, latency to fall down in the Rotarod, and a decrease in tail flick latency (p < 0.05; p < 0.01). On the other hand, pretreatment with AM630 did not induced significant differences on APICA effects.This study supports preliminary reports on APICA cannabinomimetic properties, extending its detrimental effects on cognitive function. Moreover, these properties can be attributed to the CB1 receptor activity, indicating APICA as a selective CB1 receptor agonist
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.