Every actor in business or economic actor must carry out the principle of economy with a little effort or capital capable of gaining a lot of profits, therefore causing the emergence of optimization problems. The method used in this study is the Branch and Bound method. This study aims to determine the optimization of furniture products on the street Marsan Panam using the Branch and Bound method. The initial solution is obtained using the simplex method. If the result is non-integer then it can be followed by the Branch and Bound method to get an integer solution. Based on the results of this study, the writer found out that in optimizing furniture production to gain maximum profit, then the furniture shop on the street Marsan, Panam received orders for 4 bed type furnitre products, 4 units of three-door cabinet, 2 units of two-door cabinet and 3 units of dining table with manufacturing profit Rp. 14,250,000.
The Sentosa Santul Women Farmers Group (KWT) is a group of women farmers in Dusun Santul, Kampar Utara District an is engaged in the field of food crops is chili. The Sentosa Santul Women Farmers group (KWT) uses 4 types of fertilizers for chili plant fertilization, namely hydro complex fertilizer, phonska, NPK Zamrud and goat manure.The KWT wants the minimum fertilizer cost but the nutrients in the plants are met. The method used in this research is the dual simplex method and the quick simplex method. The purpose of this study is to determine the minimum costs that must be incurred by the Womens Farmer Group (KWT) for fertilization using the dual simplex method and the quick simplex method to obtain an optimum and feasible solution. For the dual simplex method, the optimum and feasible solution were obtained using the Gauss Jordanelimination. While the quick simplex method, the solution is illustrated using a matrix to reduce the number of iterations needed to achieve the optimal solution. Based on the research result, it is found that the quick simplex method is more efficient than the dual simplex method. This can be seen from the number of iterations carried out. Dual simplex method iteration there are two iterations and quick simplex one iteration. The dual simplex method and the quick simplex method produce the same value.
Given simple graphs F, G, and H, we write F → (G, H) if for every red-blue coloring of the edges of F, there exists either a red subgraph G or a blue subgraph H in F. The size Ramsey number for G and H, denoted by r ^ (G, H), is the smallest size of a graph F which satisfies F → (G, H). If in addition F must be connected, then the resulting number is called the connected size Ramsey number for G and H, denoted by r ^ c (G, H). In this paper, we obtain upper bounds for r ^ ( t K 2 , P m ) , r ^ c ( t K 2 , P m ) , r ^ ( t K 2 , P 4 + a leaf ) , and r ^ c ( t K 2 , P 4 + a leaf ) for t ≥ 1 and m ≥ 3. We also determine the exact values of r ^ c ( 2 K 2 , P m ) and r ^ ( t K 2 , P 3 ) . In addition, the exact values of r ^ c ( t K 2 , P 3 ) for t = 3,4 are given.
Air pollution is a phenomenon that is often discussed, especially regarding air quality in urban areas. This has become a major contributor to health problems and environmental issues in Asian countries, such as Indonesia, especially Riau Province. The event of forest fires is one of the many events that occurred in Indonesia, especially Riau Province which harmed the population of Indonesia and neighboring countries. The phenomenon of forest forestry generally occurs due to a shift in the season towards drought and can occur in areas prone to forest fires. Therefore, it is necessary to know the model of air pollution distribution by Particulate Matter (PM10) in Pekanbaru City. This study aims to obtain the distribution model for daily air pollution PM10 in Pekanbaru City from 2014 to February 2015. Data was taken from three stations i.e. Sukajadi Station, Tampan Station, and Kulim Station. Four distributions will be tested i.e. Log Pearson III distribution, Gumbel distribution, Generalized Pareto Distribution, and Generalized Extreme Value (GEV) distribution. We test the goodness of fit from these distribution using the Kolmogorov-Smirnov and the Anderson-Darling tests. The result shows that the Generalized Extreme Value (GEV) distribution model was better than the Log Pearson III, Gumbel and Generalized Pareto distribution models for modeling city air pollution data Pekanbaru with three stations namely Sukajadi, Tampan, and Kulim.Keywords: Anderson-Darling; Generalized Extreme Value (GEV); Kolmogorov-Smirnov. AbstrakPencemaran udara merupakan satu fenomena yang sering dibicarakan, apalagi mengenai kualitas udara di daerah perkotaan. Hal ini menjadi penyumbang utama tentang masalah kesehatan dan isu lingkungan hidup di negara-negara Asia, seperti Negara Indonesia khususnya Provinsi Riau. Peristiwa kebakaran hutan merupakan salah satu peristiwa yang banyak terjadi di Indonesia khususnya Provinsi Riau yang berdampak negatif terhadap penduduk Indonesia dan negara tetangga. Fenomena kebarakan hutan pada umumnya terjadi karena adanya pergeseran musim kearah kemarau dan dapat terjadi di daerah rawan kebakaran hutan. Oleh karena itu, perlu diketahui model distribusi pencemaran udara oleh Particulate Matter (PM10) Kota Pekanbaru. Penelitian ini bertujuan untuk mendapatkan model distribusi data harian pencemaran udara oleh Particulate Matter (PM10) Kota Pekanbaru Tahun 2014 sampai Februari 2015 dengan tiga stasiun yaitu stasiun sukajadi, stasiun tampan dan stasiun kulim. Adapun distribusi yang digunakan adalah distribusi Log Pearson III, distribusi Gumbel, Distribusi Generalized Pareto dan distribusi Generalized Extreme Value (GEV). Berdasarkan pembahasan uji kebaikan (Goodness of Fit) yaitu uji Kolmogorov-Smirnov dan Anderson-Darling, maka diperoleh bahwa model distribusi Generalized Extreme Value (GEV) lebih baik dari pada model distribusi Log Pearson III, Gumbel dan Generalized Pareto untuk memodelkan data pencemaran udara kota Pekanbaru dengan tiga stasiun yaitu Sukajadi, Tampan dan Kulim.Kata Kunci: Anderson-Darling, Generalized Extreme Value (GEV), Kolmogorov-Smirnov
<p><em>Training of communities around forests is needed to improve the management of non-timber forest products for community empowerment. This training activity is carried out every year, so it is necessary to design forestry training for the community. Therefore, it is required to predict the number of incoming trainees so that the training can be carried out evenly by forestry extension workers. This study aims to determine the application of the Single Exponential Smoothing method in predicting the number of community trainees in 2022. This study used a trial system of testing values using 0.1 to 0.9 and minimized errors by calculating MAE, MSE, and MAPE. Based on the results of the study, it is predicted that the number of community training participants in 2022 using the Single Exponential Smoothing method with </em> <em> with a minimum MAPE of </em> <em> with several community training participants 2022 as many as 186 participants.</em></p><p>Pelatihan masyarakat sekitar hutan diperlukan sebagai upaya peningkatan pengelolaan hasil hutan non kayu guna pemberdayaan masyarakat. Kegiatan pelatihan ini dilaksanakan setiap tahun, sehingga diperlukan perancangan pelatihan kehutanan bagi masyarakat. Oleh karena itu, perlu diprediksi jumlah peserta pelatihan yang akan datang agar pelatihan dapat dilaksanakan secara merata oleh penyuluh kehutanan. Tujuan penelitian ini adalah untuk mengetahui penerapan metode <em>Single Exponensial Smoothing </em>dalam memprediksi jumlah peserta pelatihan masyarakat pada tahun 2022. Penelitian ini menggunakan system trial pengujian nilai dengan menggunakan 0,1 sampai dengan 0,9 dan meminimumkan <em>error</em> dengan menghitung MAE<em>, </em>MSE, dan MAPE.<em> </em>Berdasarkan hasil penelitian, diprediksi jumlah peserta pelatihan masyarakat tahun 2022 menggunakan metode <em>Single Exponential Smoothing</em> dengan dengan minimum MAPE sebesar 8,9% dengan jumlah peserta pelatihan masyarakat tahun 2022 sebanyak 186 peserta.<em></em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.