This paper presents an overview of the different methods used for sensitivity (i.e., responsivity and noise equivalent power) determination of state-of-the-art field-effect transistor-based THz detectors/sensors. We point out that the reported result may depend very much on the method used to determine the effective area of the sensor, often leading to discrepancies of up to orders of magnitude. The challenges that arise when selecting a proper method for characterisation are demonstrated using the example of a 2×7 detector array. This array utilises field-effect transistors and monolithically integrated patch antennas at 620 GHz. The directivities of the individual antennas were simulated and determined from the measured angle dependence of the rectified voltage, as a function of tilting in the E- and H-planes. Furthermore, this study shows that the experimentally determined directivity and simulations imply that the part of radiation might still propagate in the substrate, resulting in modification of the sensor effective area. Our work summarises the methods for determining sensitivity which are paving the way towards the unified scientific metrology of FET-based THz sensors, which is important for both researchers competing for records, potential users, and system designers.
A commercial GaN high electron mobility transistor (HEMT) is investigated as efficient detector of terahertz radiations. Enhancement of the photoresponse in excess of one order of magnitude (up to 1 kV W−1) is obtained when a constant drain‐to‐source current is applied. The photoresponse remains unchanged with chopping frequency up to 5 kHz demonstrating a high‐speed response of GaN HEMT detectors. It is demonstrated that the bounding wires play an important role to couple terahertz radiations to the channel of the device. Terahertz imaging of hidden objects by using GaN HEMTs as a sensor is also demonstrated.
We report on room temperature non-resonant detection of terahertz radiation using strained Silicon MODFETs with nanoscale gate lengths. The devices were excited at room temperature by an electronic source at 150 and 300 GHz. A maximum intensity of the photoresponse signal was observed around the threshold voltage. Results from numerical simulations based on synopsys TCAD are in agreement with experimental ones. The NEP and Responsivity were calculated from the photoreponse signal obtained experimentally. Those values are competitive with the commercial ones. A maximum of photoresponse was obtained (for all devices) when the polarization of the incident terahertz radiations was in parallel with the fingers of the gate pads. For applications, the device was used as a sensor within a terahertz imaging system and its ability for inspection of hidden objects was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.