Accumulation of mechanical stresses during cancer progression can induce blood and lymphatic vessel compression, creating hypo-perfusion, hypoxia and interstitial hypertension which decrease the efficacy of chemo- and nanotherapies. Stress alleviation treatment has been recently proposed to reduce mechanical stresses in order to decompress tumor vessels and improve perfusion and chemotherapy. However, it remains unclear if it improves the efficacy of nanomedicines, which present numerous advantages over traditional chemotherapeutic drugs. Furthermore, we need to identify safe and well-tolerated pharmaceutical agents that reduce stress levels and may be added to cancer patients’ treatment regimen. Here, we show mathematically and with a series of in vivo experiments that stress alleviation improves the delivery of drugs in a size-independent manner. Importantly, we propose the repurposing of tranilast, a clinically approved anti-fibrotic drug as stress-alleviating agent. Using two orthotopic mammary tumor models, we demonstrate that tranilast reduces mechanical stresses, decreases interstitial fluid pressure (IFP), improves tumor perfusion and significantly enhances the efficacy of different-sized drugs, doxorubicin, Abraxane and Doxil, by suppressing TGFβ signaling and expression of extracellular matrix components. Our findings strongly suggest that repurposing tranilast could be directly used as a promising strategy to enhance, not only chemotherapy, but also the efficacy of cancer nanomedicine.
This report, which is a sequence of a series of reviews, records the most important chiral selectors (CSs) applied in CE. It highlights the CSs that were used during the period 2014 to mid-2016. In this review, method developments, validations, and pharmaceutical along with biomedical applications are presented. The different CSs include CDs, antibiotics, cyclofructants, linear and branched oligo- and polysaccharides, and polymeric surfactants. In addition, the advantages of these CSs, along with their chiral recognition mechanisms, and their performance, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.