Previous research has revealed the need for a validation study that considers several wake quantities and code types so that decisions on the trade-off between accuracy and computational cost can be well informed and appropriate to the intended application. In addition to guiding code choice and setup, rigorous model validation exercises are needed to identify weaknesses and strengths of specific models and guide future improvements. Here, we consider 13 approaches to simulating wakes observed with a nacelle-mounted lidar at the Scaled Wind Technology Facility (SWiFT) under varying atmospheric conditions. We find that some of the main challenges in wind turbine wake modeling are related to simulating the inflow. In the neutral benchmark, model performance tracked as expected with model fidelity, with large-eddy simulations performing the best. In the more challenging stable case, steady-state Reynolds-averaged Navier-Stokes simulations were found to outperform other model alternatives because they provide the ability to more easily prescribe noncanonical inflows and their low cost allows for simulations to be repeated as needed. Dynamic measurements were only available for the unstable benchmark at a single downstream distance. These dynamic analyses revealed that differences in the performance of time-stepping models come largely from differences in wake meandering. This highlights the need for more validation exercises that take into account wake dynamics and are able to identify where these differences come from: mesh setup, inflow, turbulence models, or wake-meandering parameterizations. In addition to model validation findings, we summarize lessons learned and provide recommendations for future benchmark exercises.
Accurately representing flow across the mesoscale to the microscale is a persistent roadblock for completing realistic microscale simulations. The science challenges that must be addressed to coupling at these scales include the following: 1) What is necessary to capture the variability of the mesoscale flow, and how do we avoid generating spurious rolls within the terra incognita between the scales? 2) Which methods effectively couple the mesoscale to the microscale and capture the correct nonstationary features at the microscale? 3) What are the best methods to initialize turbulence at the microscale? 4) What is the best way to handle the surface-layer parameterizations consistently at the mesoscale and the microscale? 5) How do we assess the impact of improvements in each of these aspects and quantify the uncertainty in the simulations? The U.S. Department of Energy Mesoscale-to-Microscale-Coupling project seeks to develop, verify, and validate physical models and modeling techniques that bridge the most important atmospheric scales determining wind plant performance and reliability, which impacts many meteorological applications. The approach begins with choosing case days that are interesting for wind energy for which there are observational data for validation. The team has focused on modeling nonstationary conditions for both flat and complex terrain. This paper describes the approaches taken to answer the science challenges, culminating in recommendations for best approaches for coupled modeling.
Mesoscale-to-microscale coupling (MMC) aims to address the limited scope of traditional large-eddy simulations by driving the microscale flow with information concerning largescale weather patterns provided by mesoscale models. We present a new offline MMC technique for horizontally homogeneous microscale flow conditions, in which internal forcing terms are computed based on mesoscale time-height profiles of mean-flow quantities.The advantage of such an approach is that it can be used to drive a microscale simulation with either mesoscale or observational data, and that it does not rely on specific terms in the mesoscale budget equations, which are typically not part of the default output of a mesoscale solver. The performance of the proposed profile assimilation technique is assessed based on the simulation of a typical diurnal cycle over the Scaled Wind Farm Technology site in west Texas. Results indicate that simple data assimilation techniques lead to unphysically high levels of shear and turbulence caused by the algorithm's inability to cope with inaccuracies in the mesoscale time-height profiles. Modifying the algorithm to account for vertical coherence in the mesoscale source terms gives the microscale solver a greater ability to correct the provided mesoscale time-height profiles, leading to improved predictions of shear and turbulence statistics. The resulting turbulence statistics are in good agreement with meteorological tower observations and simulation results obtained with state-of-the-art coupling techniques using mesoscale budget components.
Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.