Phylogenetic analyses of foot-and-mouth disease type A viruses in the Middle East during 2015–2016 identified viruses belonging to the A/ASIA/G-VII lineage, which originated in the Indian subcontinent. Changes in a critical antigenic site within capsid viral protein 1 suggest possible evolutionary pressure caused by an intensive vaccination program.
The most sensitive cell culture system for the isolation of foot-and-mouth disease virus (FMDV) is primary bovine thyroid (BTY) cells. However, BTY cells are seldom used because of the challenges associated with sourcing thyroids from FMDV-negative calves (particularly in FMD endemic countries), and the costs and time required to regularly prepare batches of cells. Two continuous cell lines, a fetal goat tongue cell line (ZZ-R 127) and a fetal porcine kidney cell line (LFBK-α V β 6), have been shown to be highly sensitive to FMDV. Here, we assessed the sensitivity of ZZ-R 127 and LFBK-α V β 6 cells relative to primary BTY cells by titrating a range of FMDV original samples and isolates. Both the ZZ-R 127 and LFBK-α V β 6 cells were susceptible to FMDV for >100 passages, and there were no significant differences in sensitivity relative to primary BTY cells. Notably, the LFBK-α V β 6 cell line was highly sensitive to the O/CATHAY porcine-adapted FMDV strain. These results support the use of ZZ-R 127 and LFBK-α V β 6 as sensitive alternatives to BTY cells for the isolation of FMDV, and highlight the use of LFBK-α V β 6 cells as an additional tool for the isolation of porcinophilic viruses.
The genome sequences of three serotype O foot-and-mouth disease viruses (FMDVs) isolated from outbreaks in Pakistan in 2016 and 2017 are described. Despite all three isolates being classified in the same FMDV genetic sublineage, two of them displayed a distinct antigenic phenotype against commonly used vaccine strains.
The LFBK-αvβ6 cell line is highly sensitive for the isolation of foot-and-mouth disease virus (FMDV) and porcinophilic vesicular viruses. However, LFBK-αvβ6 cells are contaminated with a non-cytopathic bovine viral diarrhea virus (BVDV), which complicates handling procedures in areas where other cell lines are maintained, as well downstream use of viral isolates. In this study, we used an aromatic cationic compound (DB772) to treat LFBK-αvβ6 cells using an approach that has been previously used to eliminate persistent BVDV from fetal fibroblast cell lines. After three cell passages with 4 μM DB772, BVDV could no longer be detected in unclarified cell suspensions using a pan-pestivirus real-time RT-PCR assay, and remained undetectable after treatment was stopped (nine passages) for an additional 28 passages. The analytical sensitivity of the DB772-treated LFBK-αvβ6 cultures (renamed WRL-LFBK-αvβ6) to titrations of FMDV and other vesicular virus isolates was comparable to untreated LFBK-αvβ6 cells. These new BVDV-free cells can be handled without the risk of cross-contaminating other cells lines or reagents, and used for routine diagnostics, in vivo studies and/or preparation of new vaccine strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.