The occurrence and fate of pharmaceutical and personal care products in the environment are of increasing public importance because of their ubiquitous nature and documented effects on wildlife, ecosystems, and potentially humans. One potential, yet undefined, source of entry of pharmaceuticals into the environment is via the land application of municipal wastewater onto permitted lands. The objective of the present study is to determine the extent to which pharmaceuticals are mitigated by or exported from managed tree plantations irrigated with municipal wastewater. A specific focus of the present study is the presence of pharmaceutical compounds in groundwater and surface water discharge. The study site is a municipality that land-applies secondary treated wastewater onto 930 hectares of a 2000-hectare managed hardwood and pine plantation. A suite of 33 pharmaceuticals and steroid hormones was targeted in the analysis, which consisted of monthly grab sampling of groundwater, surface water, and wastewater, followed by concentration and cleanup via solid phase extraction and separation, detection, and quantification via liquid chromatography coupled with tandem mass spectrometry. More than one-half of all compounds detected in irrigated wastewater were not present in groundwater and subsequent surface water. However, antibiotics, nonsteroidal anti-inflammatory drugs, caffeine, and other prescription and over-the-counter drugs remained in groundwater and were transported into surface water at concentrations up to 10 ng/L. These results provide important documentation for pharmaceutical fate and transport in forest systems irrigated with municipal wastewater, a previously undocumented source of environmental entry.
Results from natural and engineered phytoremediation systems provide strong evidencethatvegetated soils mitigate polycyclic aromatic hydrocarbon (PAH) contamination. However, the mechanisms by which PAH mitigation occurs and the impact of plant organic matter on PAH attenuation remain unclear. This study assessed the impact of plant organic matter on PAH attenuation in labile and refractory sediments fractions from a petroleum distillate waste pit that has naturally revegetated. Samples were collected in distinct zones of barren and vegetated areas to assess changes to organic matter composition and PAH content as vegetation colonized and became established in the waste pit. Sediments were fractionated into bulk sediment and humin fractions and analyzed for organic matter composition by isotope ratio mass spectrometry (delta (13)C), 13C nuclear magnetic resonance (13C NMR), delta 14C AMS (accelerator mass spectrometry), and percent organic carbon (%TOC). Gas chromatography mass spectrometry (GC/ MS) of lipid extracts of SOM fractions provided data for PAH distribution histograms, compound weathering ratios, and alkylated and nonalkylated PAH concentrations. Inputs of biogenic plant carbon, PAH weathering, and declines in PAH concentrations are most evidentfor vegetated SOM fractions, particularly humin fractions. Sequestered PAH metabolites were also observed in vegetated humin. These results show that plant organic matter does impact PAH attenuation in both labile and refractory fractions of petroleum distillate waste.
We explored the relationship between tree growth, water use, and related hydraulic traits in Populus deltoides Bartr. ex Marsh.and hybrid clones, to examine potential trade-offs between growth and water use efficiency. Nine genotypes, six P. deltoides and three hybrid clones, that represented genotypes with high (Group H), intermediate (Group I), and low (Group L) growth performance were selected for study, based on year-two standing stem biomass in a replicated field trial. In year four, tree growth, transpiration (Et), canopy stomatal conductance (Gs), whole-tree hydraulic conductance (Gp), and carbon isotope discrimination (Δ13C) were measured. Tree sap flux was measured continuously using thermal dissipation probes. We hypothesized that Group H genotypes would have increased growth efficiency (GE), increased water use efficiency of production (WUEp, woody biomass growth/Et), lower Δ13C, and greater Gp than slower growing genotypes. Tree GE increased with relative growth rate (RGR), and mean GE in Group H was significantly greater than L, but not I. Tree WUEp ranged between 1.7 and 3.9 kg biomass m3 H2O−1, which increased with RGR. At similar levels of Et, WUEp was significantly greater in Group H (2.45 ± 0.20 kg m−3), compared to I (2.03 ± 0.18 kg m−3) or L (1.72 ± 0.23 kg m−3). Leaf and wood Δ13C scaled positively with stem biomass growth but was not correlated with WUEp. However, at a similar biomass increment, clones in Group H and I had significantly lower leaf Δ13C than Group L. Similarly, Group H clones had a significantly lower wood Δ13C than Group L, supporting our hypothesis of increased WUE in larger trees. Tree physiological and hydraulic traits partially explain differences in WUEp and Δ13C, and suggest that clone selection and management activities that increase tree biomass production will likely increase tree and stand WUE. However, more research is needed to discern the underlying hydraulic mechanisms responsible for the higher WUE exhibited by large trees and distinct clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.