The present research investigates the effects of top-down information on 12-month-olds’ representations of physical events, focusing on their ability to detect an object change across different events. Infants this age typically fail to detect height changes in events with tubes even though they successfully do so in events with covers. In Experiment 1, infants who saw a tube event in which objects did not interact successfully detected a change in an object’s height, suggesting that object interaction affects infants’ categorization of physical events. Experiments 2 and 3 examined the fine-grained process of event representation. In Experiment 2, infants detected the change in the tube event if they were led by pretest exposure to believe that the event was conducted with a cover. In Experiment 3, infants who initially believed so updated their representation if shown a tube before object interaction occurred (but not after). Together, these findings provide new evidence that infants, like older children and adults, actively construct physical events. Whether they notice a change depends on their existing knowledge and the current representation of the event.
Prior work has yielded contradicting evidence regarding the age at which children consistently and correctly categorize things as living or non-living. The present study tested children’s animacy judgments about robots with a Naïve Biology task. In the Naïve Biology task, 3- and 5-year-olds were asked if robots, animals, or artifacts possessed mechanical or biological internal parts. To gauge how much children anthropomorphize robots in comparison to animals and artifacts, children also responded to a set of interview questions. To examine the role of morphology, two robots were used: a humanoid robot (Nao) and a non-humanoid robot (Dash). To investigate the role of dynamic characteristics, children saw one robot behave in a goal-directed manner (i.e., moving towards a ball) and one robot exhibit non-goal-directed behavior (i.e., moving away from a ball). Children of both age groups correctly attributed biological insides to the animal and mechanical insides to the artifact. However, 3-year-olds seemed confused about what belonged inside both robots and assigned biological and mechanical insides equally. In contrast, 5-year-olds correctly assigned mechanical insides to both robots, regardless of the robot’s morphology or goal-directedness. Regarding the Animacy Interview, 3-year-olds performed at chance level when asked about the animacy of robots, animals, and artifacts. In contrast, 5-year-olds correctly attributed animacy to animals and accurately refrained from anthropomorphizing artifacts and the non-humanoid robot Dash. However, 5-year-olds performed at chance for Nao, suggesting they may be confused about the psychological properties of a human-looking robot. Taken together, these findings reveal a developmental transition during the preschool years in the attribution of biological and psychological properties to social robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.