The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.
Aims Loline alkaloids produced by Epichloë spp. are known to deter feeding by insect herbivores while also serving as a significant carbon source for certain epiphytic bacteria on tall fescue leaves. In this study we examined the role of loline alkaloids in attracting certain bacteria to the rhizosphere of tall fescue plants that harbor loline producing fungal endophytes. Methods Population studies were used to compare the fitness of known loline catabolizing strains to other rhizosphere bacteria. Pyrosequencing of 16S rRNA fragments compared the composition of bacterial communities inhabiting the endophyte infected tall fescue (Festuca arundinacea) rhizosphere to those of endophyte free fescue plants.Results Rhizosphere population studies demonstrated that loline catabolizing strains Burkholderia ambifaria 7R and Pseudomonas aureofaciens outcompete and suppress the growth of non-loline catabolizing strains. Pyrosequencing of 16S rRNA fragments showed greater percentages of certain plant growth promoting bacteria in rhizosperes seeded with B. ambifaria 7R than noninoculated soils. Rhizospheres of endophyte infected plants showed higher species richness (Shannon diversity index=4.03) over endophyte free rhizospheres (Shannon diversity index=3.08) and a greater percentage of Firmicutes. Conclusions The differences in microbial community composition between endophyte-infected and endophytefree rhizospheres suggest that the presence of fungal endophytes influences microbial community structure. Loline alkaloid production may be one proxy by which the fungal endophyte shapes microbial communities, as evidenced by increased fitness of loline catabolizing bacteria in the tall fescue rhizosphere.
Micronutrients applied as nanoparticles of metal oxides have shown efficacy in vegetable and other crops for improving yield and reducing Fusarium diseases, but their role in ornamental crop management has not been investigated. In 2017, 2018, and 2020, nanoparticles of CuO, Mn 2 O 3 , or ZnO were foliarly applied at 500 μg/mL (0.6 mg/plant) to chrysanthemum transplants and planted in potting soil noninfested or infested with Fusarium oxysporum f. sp. chrysanthemi. An untreated control and a commercial fungicide, Fludioxonil, was also included. Chrysanthemums treated with nanoscale CuO had a 55, 30, and 32% reduction in disease severity ratings compared to untreated plants in 2017, 2018, and 2020, respectively. Specifically, the average dry biomass for the three years was reduced 22% by disease, but treatment with nanoscale CuO led to a 23% increase when compared to controls. Similar trends with plant height were observed. Horticultural quality was improved 28% with nano CuO and was equal to the fungicide. Nanoscale Mn 2 O 3 and the fungicide did not consistently reduce disease ratings or increase dry biomass each year. Nanoscale ZnO was ineffective. Nanoscale CuO-treated plants had 24 to 48% more Cu/ g tissue than controls (P < 0.001). These findings agree with past reports on food crops where single applications of nanoscale CuO improved plant health, growth, and yield and could offer significant impacts for managing plant diseases on ornamentals.
Bioassay-guided fractionation of the crude extract (80% EtOH) of the leaves of Cestrum schlechtendahlii, a plant used by Q'eqchi' Maya healers for treatment of athlete's foot, resulted in the isolation and identification of two spirostanol saponins (1 and 2). Structure elucidation by MS, 1D-NMR, and 2D-NMR spectroscopic methods identified them to be the known saponin (25R)-1β,2α-dihydroxy-5α-spirostan-3-β-yl-O-α-L-rhamnopyranosyl-(1 → 2)-β-D-galactopyranoside (1) and new saponin (25R)-1β,2α-dihydroxy-5α-spirostan-3-β-yl-O-β-D-galactopyranoside (2). While 2 showed little or no antifungal activity at the highest concentration tested, 1 inhibited growth of Saccharomyces cerevisiae (minimum inhibitory concentration (MIC) of 15-25 μM), Candida albicans, Cryptococcus neoformans, and Fusarium graminearum (MIC of 132-198 μM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.