The article is devoted to the development of the mathematical model of oxidative regeneration of the cylindrical catalyst grain. The model is constructed using a diffusion approach to modeling catalytic processes. The model is based on the equations of material and thermal balance. Mass transfer in the catalyst grain is carried out due to diffusion and the Stefan flow resulting from a decrease in the reaction volume during sorption processes. Chemical transformations of substances are taken into account as a source term in the equation. The thermal balance of the catalyst grain is described by a thermal conductivity equation, with an inhomogeneous term responsible for heating the grain during exothermic chemical reactions. The effective coefficients of heat capacity and thermal conductivity of the catalyst grain, which are determined taking into account the porosity of the grain depending on temperature, were used to calculate the thermal balance of the catalyst grain. The dependencies are approximated using the method of least squares based on experimental data. Different boundary conditions for the developed model allow calculating the main characteristics of the oxidative regeneration process for a whole catalyst grain under different conditions. The mathematical model of oxidative regeneration of a cylindrical catalyst grain is described by a stiff system of differential equations. Splitting by physical processes is applied to avoid computational difficulties. The calculation of flows is carried out sequentially: first, chemical problems are solved using the Radau method, then the diffusion and thermal conductivity equations are solved by the finite volume method. The result of the algorithm implemented in C++ is a picture of the distribution of substances and temperature along the cylindrical grain of the catalyst.
A numerical algorithm is developed and implemented for modelling axisymmetric subsonic reacting gas flows based on a previously created program for plane flows. The system of Navier-Stokes equations in the low Mach number limit is used as a mathematical model. Calculations of ethane pyrolysis for axisymmetric and plane flow of mixture at heat supply from the reactor’s walls are carried out. Through the interplay of the developed code and the code for plane flows it becomes possible to identify the geometric factor role at the presence of a large number of nonlinear physicochemical processes. We found that diffusion of synthesized molecular hydrogen mainly influences heat supply from the reactor’s walls to gas and pyrolysis products distribution along its length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.