Despite the rapid depletion of global reserves (Shafiee & Topal, 2009) and harmful effects on global climate (IPCC, 2018), fossil fuel burning continues to dominate energy systems worldwide (Johansson et al., 2012). Solar farms offer an attractive solution for the transition to clean and sustainable energy use: solar power is the most abundant available renewable energy source (Johansson et al., 2012; Sieminski, 2013) and helps to mitigate climate change through reduced emissions (Creutzig et al., 2017; Kannan & Vakeesan, 2016). Harvesting the globally available solar energy (or even just that over the Sahara) could theoretically meet all humanity's energy needs today (Hu et al., 2016; Li et al., 2018). Large-scale deployment of solar facilities over the world's deserts has been advanced as a feasible option (Komoto et al., 2015). The climate and environmental impacts of solar farms have drawn increasing attention due to the rapid development of solar energy. Indeed, both on-site (e.g.
Summer rainfall in the Sahel region has exhibited strong multidecadal variability during the 20th century causing dramatic human and socio-economic impacts. Studies have suggested that the variability is linked to the Atlantic multidecadal variability; a spatially persistent pattern of warm/cold sea surface temperatures in the North Atlantic. In the last few years, several promising century-long reanalysis datasets have been made available, opening up for further studies into the dynamics inducing the observed low-frequency rainfall variability in Sahel. We find that although three of the 20th century ECMWF reanalyses show clear multidecadal rainfall variability with extended wet and dry periods, the timing of the multidecadal variability in two of these reanalyses is found to exhibit almost anti-phase features for a large part of the 20th century when compared to observations. The best representation of the multidecadal rainfall variability is found in the ECMWF reanalysis that, unlike the other reanalyses (including NOAA’s 20th century), do not assimilate any observations and may well be a critical reason for this mismatch, as discussed herein. This reanalysis, namely ERA-20CM, is thus recommended for future studies on the dynamics driving the multidecadal rainfall variability in Sahel and its linkages to the low-frequency North Atlantic oceanic temperatures.
Abstract. As global warming is proceeding due to rising greenhouse gas concentrations, the Earth system moves towards climate states that challenge adaptation. Past Earth system states are offering possible modelling systems for the global warming of the coming decades. These include the climate of the mid-Pliocene (∼ 3 Ma), the last interglacial (∼ 129–116 ka) and the mid-Holocene (∼ 6 ka). The simulations for these past warm periods are the key experiments in the Paleoclimate Model Intercomparison Project (PMIP) phase 4, contributing to phase 6 of the Coupled Model Intercomparison Project (CMIP6). Paleoclimate modelling has long been regarded as a robust out-of-sample test bed of the climate models used to project future climate changes. Here, we document the model setup for PMIP4 experiments with EC-Earth3-LR and present the large-scale features from the simulations for the mid-Holocene, the last interglacial and the mid-Pliocene. Using the pre-industrial climate as a reference state, we show global temperature changes, large-scale Hadley circulation and Walker circulation, polar warming, global monsoons and the climate variability modes – El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). EC-Earth3-LR simulates reasonable climate responses during past warm periods, as shown in the other PMIP4-CMIP6 model ensemble. The systematic comparison of these climate changes in past three warm periods in an individual model demonstrates the model's ability to capture the climate response under different climate forcings, providing potential implications for confidence in future projections with the EC-Earth model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.