Ingestion of water contaminated with the cyanotoxin, microcystin (MC), can pose serious health risks to humans. MC is also known to accumulate in seafood; however, this exposure pathway is much less understood. A fundamental element of this uncertainty is related to analytical difficulties. Commercially available enzyme-linked immunosorbent assays (ELISAs) offer one of the best options for routine MC detection, but methods of detecting MC in tissue are far from standardized. We spiked freshwater finfish and marine mussel tissues with MC, then compared recovery rates using four different preparation protocols and two ELISA types (polyclonal anti-MC-ADDA/direct monoclonal (DM)). Preparation protocol, type of ELISA, and seafood tissue variety significantly affected MC detection. This is the first known study to use DM ELISA for tissue analyses, and our findings demonstrate that DM ELISA combined with a short solvent extraction results in fewer false positives than other commonly used methods. This method can be used for rapid and reliable MC detection in seafood.
Until recently, exposure pathways of concern for cyanotoxins have focused on recreational exposure, drinking water, and dermal contact. Exposure to cyanotoxins through fish consumption is a relatively new area of investigation. To address this concern, microcystins and other cyanotoxins were analyzed in fish collected from nine Washington lakes with recurrent toxic blooms using two types of enzyme-linked immunosorbent assays (ELISAs) and liquid chromatography/mass spectrometry/mass spectrometry (LC-MS/MS). Microcystins or microcystin-like compounds were elevated in fish liver relative to muscle and other tissues (liver>gut>muscle). Microcystin concentrations in fish fillet samples using anti-Adda ELISA (range 6.3-11 μg/kg wet weight) were consistently higher in all fish species than concentrations using anti-microcystin (MC)-leucine-arginine (LR) ELISA (range 0.25-2.4 μg/kg wet weight). MC-leucine-alanine (LA) was the only variant detected in fish (2.5-12 μg/kg in four livers) among the nine variants analyzed by LC-MS/MS. Fish fillets showed no accumulation of the MCs targeted by LC-MS/MS. Other cyanotoxins analyzed (anatoxin-a, saxitoxin, domoic acid, and okadaic acid) were not detected in fish. Based on this and evidence from other studies, we believe that people can safely consume two 8-oz fish fillet meals per week from lakes with blooms producing MCs (clean the fish and discard viscera).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.