Activated protein C (APC) is a systemic anti-coagulant and anti-inflammatory factor. It reduces organ damage in animal models of sepsis, ischemic injury and stroke and substantially reduces mortality in patients with severe sepsis. It was not known whether APC acts as a direct cell survival factor or whether its neuroprotective effect is secondary to its anti-coagulant and anti-inflammatory effects. We report that APC directly prevents apoptosis in hypoxic human brain endothelium through transcriptionally dependent inhibition of tumor suppressor protein p53, normalization of the pro-apoptotic Bax/Bcl-2 ratio and reduction of caspase-3 signaling. These mechanisms are distinct from those involving upregulation of the genes encoding the anti-apoptotic Bcl-2 homolog A1 and inhibitor of apoptosis protein-1 (IAP-1) by APC in umbilical vein endothelial cells. Cytoprotection of brain endothelium by APC in vitro required endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1), as did its in vivo neuroprotective activity in a stroke model of mice with a severe deficiency of EPCR. This is consistent with work showing the direct effects of APC on cultured cells via EPCR and PAR-1 (ref. 9). Moreover, the in vivo neuroprotective effects of low-dose mouse APC seemed to be independent of its anti-coagulant activity. Thus, APC protects the brain from ischemic injury by acting directly on brain cells.
The use of adipose-derived stem/stromal cells (ASCs) for promoting repair of tissues is a promising potential therapy, but the mechanisms of their action are not fully understood. We and others previously demonstrated accelerated reperfusion and tissue salvage by ASCs in peripheral ischemia models and have shown that ASCs secrete physiologically relevant levels of hepatocyte growth factor (HGF) and vascular endothelial growth factor. The specific contribution of HGF to ASC potency was determined by silencing HGF expression. RNA interference was used to downregulate HGF expression. A dual-cassette lentiviral construct expressing green fluorescent protein (GFP) and either a small hairpin RNA specifically targeted to HGF mRNA (shHGF) or an inactive control sequence (shCtrl) were used to stably transduce ASCs (ASC-shHGF and ASCshCtrl, respectively). Transduced ASC-shHGF secreted >80% less HGF, which led to a reduced ability to promote survival, proliferation, and migration of mature and progenitor endothelial cells in vitro. ASC-shHGF were also significantly impaired, compared with ASC-shCtrl, in their ability to promote reperfusion in a mouse hindlimb ischemia model. The diminished ability of ASCs with silenced HGF to promote reperfusion of ischemic tissues was reflected by reduced densities of capillaries in reperfused tissues. In addition, fewer GFP ؉ cells were detected at 3 weeks in ischemic limbs of mice treated with ASCshHGF compared with those treated with ASC-shCtrl. These results indicate that production of HGF is important for the potency of ASCs. This finding directly supports the emerging concept that local factor secretion by donor cells is a key element of cell-based therapies. STEM CELLS 2007;25:3234 -3243 Disclosure of potential conflicts of interest is found at the end of this article.
A two-dimensional multiscale model is introduced for studying formation of a thrombus (clot) in a blood vessel. It involves components for modelling viscous, incompressible blood plasma; non-activated and activated platelets; blood cells; activating chemicals; fibrinogen; and vessel walls and their interactions. The macroscale dynamics of the blood flow is described by the continuum Navier-Stokes equations. The microscale interactions between the activated platelets, the platelets and fibrinogen and the platelets and vessel wall are described through an extended stochastic discrete cellular Potts model. The model is tested for robustness with respect to fluctuations of basic parameters. Simulation results demonstrate the development of an inhomogeneous internal structure of the thrombus, which is confirmed by the preliminary experimental data. We also make predictions about different stages in thrombus development, which can be tested experimentally and suggest specific experiments. Lastly, we demonstrate that the dependence of the thrombus size on the blood flow rate in simulations is close to the one observed experimentally.
Matings of mice heterozygous for a protein C (PC) deficient allele, produced by targeted PC gene inactivation, yielded the expected Mendelian distribution of PC genotypes. Pups with a total deficiency of PC (PC Ϫ / Ϫ ), obtained at embryonic day (E) 17.5 and at birth, appeared to develop normally macroscopically, but possessed obvious signs of bleeding and thrombosis and did not survive beyond 24 h after delivery. Microscopic examination of tissues and blood vessels of E17.5 PC Ϫ / Ϫ mice revealed their normal development, but scattered microvascular thrombosis in the brain combined with focal necrosis in the liver was observed. In addition, bleeding was noted in the brain near sites of fibrin deposition. The severity of these pathologies was exaggerated in PC Ϫ / Ϫ neonates. Plasma clottable fibrinogen was not detectable in coagulation assays in PC Ϫ / Ϫ neonatal mice, suggestive of fibrinogen depletion and secondary consumptive coagulopathy. Thus, while total PC deficiency did not affect the anatomic development of the embryo, severe perinatal consumptive coagulopathy occurred in the brain and liver of PC Ϫ / Ϫ mice, suggesting that a total PC deficiency is inconsistent with short-term survival. ( J. Clin. Invest. 1998.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.