The fabrication of bio-composite-derived bovine amniotic membrane (BAM) with hydroxyapatite (HAp) is an approach to combining organic and inorganic bio-material to improve the properties of both materials. This research aims to combine, fabricate and characterise the bio-composite of BAM–HA. The combination of bio-composite is made from BAM and HAp in a ratio of 30:70, 35:65, and 40:60. Dried BAM is immersed in saline and then blended until it forms an amniotic slurry with a jelly-like consistency. At this stage, HAp is added so that it can bind to BAM. After the mixture is homogeneous, the freeze-drying process is carried out. After fabrication, all the bio-composites were characterised using Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosity analysis, and biological activity was conducted using fibroblasts. The bio-composite has functional groups of amides I, II, III, A, B, OH, CO32− and PO43− according to the results of the FTIR. The XRD analysis showed the presence of HAP crystals. This functional group and the crystal HAP indicate that these two materials are bound. An SEM examination revealed a variety of porous patterns on the surface area. The bio-composite with BAM and HAp at a ratio of 35:65 has a higher mean pore size of 155.625 µm with mean porosity of 89.23% and can maintain the fibroblast viability of 95.14%. In conclusion, the study successfully combined both bio-materials BAM and HAp, which have potential synergistic effects on soft and hard tissue regeneration. The ratio of 35:65 showed good characteristics and was non-toxic.
Background: Enterococcus faecalis (E. faecalis) is the bacteria most commonly resulting from failed root canal treatment. Intracanal medicament is used to
Secretory Leukocyte Protease Inhibitor (SLPI) is serine protease inhibitor. Secretory Leukocyte Protease Inhibitor is a protein found in secretions such as whole saliva, seminal fluid, cervical mucus, synovial fluid, breast milk, tears, and cerebral spinal fluid, as in secretions from the nose and bronchi, amniotic fluid and amniotic membrane etc. These findings demonstrate that SLPI function as a potent anti protease, anti inflammatory, bactericidal, antifungal, tissue repair, extra cellular synthesis. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in the process. The objectives of this article are to investigate the role of SLPI in oral inflammation and how it contributes to tissue repair in oral mucosa. The oral wound healing responses are impaired in the SLPI sufficient mice and matrix synthesis and collagen deposition are delayed. This study indicated that SLPI is a povital factor necessary for optimal wound healing.
<p><strong><em>Background:</em></strong><em> Enterococcus faecalis and Fusobacterium nucleatum are the most common bacteria found in infected root canal teeth and most of them often caused failure in endodontic treatments. These bacteria can form biofilm which makes them more resistant against antibacterial agents. Biofilm formation also causes a decrease in antibiotics and antimicrobials sensitivity. Pluchea indica Less leaves is a species of plants that has several chemical properties. It consists of flavonoids and polyphenols which have benefits to inhibit biofilm formation. Because of its benefits, the extract of Pluchea indica Less leaves can be potentially developed as one of sterilization dressing in root canal teeth. <strong>Purpose: </strong>The aim of this study was to determine biofilm formation inhibition of Pluchea indica Less leaves extract against Enterococcus faecalis and Fusobacterium nucleatum. <strong>Materials and Methods: </strong>The dilution method was done first to show the Minimum Inhibitory Concentration (MIC) of the extract. The inhibition biolfilm formation was tested using microtitter plate assay by measuring the bacterial biofilm Optical Density (OD) from ELISA reader’s results and using autoagregation assay to show the inhibition of adherance bacteria. The Pluchea indica Less leaves extract concentration used for inhibition of biofilm formation were 100%, 50%, 25%, 12,5%, and 6,25%. <strong>Results:</strong> The result of biofilm formation inhibition showed that Pluchea indica Less leaves extract were able to inhibit Enterococcus faecalis and Fusobacterium nucleatum’ biofilm formation with strong moderate effect. The autoagregation assay showed a decrease in autoagregation percentation of Enterococcus faecalis and Fusobacterium nucleatum. <strong>Conclusions:</strong> Pluchea indica Less leaves extract has effect to inhibit biofilm formation of Enterococcus faecalis and Fusobacterium nucleatum.</em></p><p><strong><em>Keywords: </em></strong><em>Pluchea indica Less leaves extract, Enterococcus faecalis, Fusobacterium nucleatum, biofilm.</em></p><p><strong><em>Correspondence:</em></strong><em> Agni Febrina Pargaputri, Department of Oral Biology, </em><em>Faculty of Dentistry, Hang Tuah University, Arif Rahman Hakim 150, Surabaya, Phone.031-5912191</em><em>, Email: <span style="text-decoration: underline;">agni_febrina@yahoo.com</span></em><strong><em></em></strong></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.