Transcranial ultrasound stimulation (tUS) is a promising non-invasive approach to modulate brain circuits. The application is gaining popularity, however the full effect of ultrasound stimulation is still unclear and further investigation is needed. This study aims to apply optical intrinsic signal imaging (OISI) for the first time, to simultaneously monitor the wide-field cerebral hemodynamic change during tUS on awake animal with high spatial and temporal resolution. Three stimulation paradigms were delivered using a single-element focused transducer operating at 425 kHz in pulsed mode having the same intensity (ISPPA = 1.84 W/cm2, ISPTA = 129 mW/cm2) but varying pulse repetition frequencies (PRF). The results indicate a concurrent hemodynamic change occurring with all actual tUS but not under a sham stimulation. The stimulation initiated the increase of oxygenated hemoglobin (HbO) and decrease of deoxygenated hemoglobin (RHb). A statistically significant difference (p < 0.05) was found in the amplitude change of hemodynamics evoked by varying PRF. Moreover, the acoustic stimulation was able to trigger a global as well as local cerebral hemodynamic alteration in the mouse cortex. Thus, the implementation of OISI offers the possibility of directly investigating brain response in an awake animal during tUS through cerebral hemodynamic change.
BackgroundTranscranial focused ultrasound (tFUS) attracts wide attention in neuroscience as an effective noninvasive approach to modulate brain circuits. In spite of this, the effects of tFUS on the brain is still unclear, and further investigation is needed. The present study proposes to use near-infrared spectroscopy (NIRS) to observe cerebral hemodynamic change caused by tFUS in a noninvasive manner.ResultsThe results show a transient increase of oxyhemoglobin and decrease of deoxyhemoglobin concentration in the mouse model induced by ultrasound stimulation of the somatosensory cortex with a frequency of 8 MHz but not in sham. In addition, the amplitude of hemodynamics change can be related to the peak intensity of the acoustic wave.ConclusionHigh frequency 8 MHz ultrasound was shown to induce hemodynamic changes measured using NIRS through the intact mouse head. The implementation of NIRS offers the possibility of investigating brain response noninvasively for different tFUS parameters through cerebral hemodynamic change.
BackgroundThe monitoring of brain activity along with genital organ response to sexual stimulation can play an important role in understanding the under-lying mechanisms of sexual arousal as well as diagnosing erectile dysfunction. Several studies have observed brain activity corresponding to sexual stimuli, but only a few studies have shown a simultaneous measurement of brain activation and penile response.AimTo introduce near-infrared spectroscopy (NIRS) as a portable, easily implemented, and low-cost technique to simultaneously record brain activity and hemodynamics in the genital organ during sexual arousal.MethodsHemodynamic measurements of 15 healthy men were obtained using a home-built NIRS system. In the initial experiment, hemodynamics in the pre-frontal cortex (N = 10) were measured during visual sexual stimulation (VSS) and neutral visual stimulation (NVS) to identify brain activity related to sexual arousal. In the subsequent experiment, cerebral and penile hemodynamics were simultaneously measured (N = 5) using NIRS during VSS and NVS.ResultsThe pre-frontal cortex showed activity related to VSS but not to NVS. Simultaneous measurements showed a corresponding increase of penile oxygenated and deoxygenated hemoglobin concentration indicating an increase of blood volume associated with sexual arousal in healthy men. An average response delay of 4 seconds was observed in the hemodynamic changes between the brain and genital organ.ConclusionIn this preliminary study, we presented a NIRS system capable not only of detecting cerebral hemodynamic changes related to sexual arousal but also the simultaneous measurement of penile hemodynamics. We believe the NIRS system can be a potential technique to supplement the field of sexual medicine and can be expanded further to diagnose erectile dysfunction.Kim E, Kim S, Zephaniah PV, et al. Simultaneous Monitoring of Hemodynamic Response in the Pre-Frontal Cortex and Genital Organ During Sexual Arousal Using Near-Infrared Spectroscopy. Sex Med 2018;6:234–238.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.