Antisense oligonucleotides (ASO) are promising therapies for neurological disorders, though they are unable to cross the blood-brain barrier (BBB) and must be delivered directly to the central nervous system (CNS). Here, we use a human transferrin receptor (TfR)-binding molecule to transport ASO across the BBB in mice and non-human primates, termed oligonucleotide transport vehicle (OTV). Systemically delivered OTV drives significant, cumulative, and sustained knockdown of the ASO target across multiple CNS regions and all major cell types. Further, systemic OTV delivery enables more uniform ASO biodistribution and knockdown compared to two other clinically relevant ASO delivery routes: a standard, high affinity TfR antibody, or direct ASO delivery to the CSF. Together, our data support systemically delivered OTV as a potential therapeutic platform for neurological disorders.
Fenbendazole is a broad-spectrum benzimidazole commonly used in laboratory animal medicine as an anthelmintic for elimination of pinworms. This drug is generally regarded as safe, with minimal side effects. Some data in rodent species indicate multiple physiologic effects of fenbendazole, including changes in immune parameters and behavior, but no studies to date have evaluated possible effects on reproduction in mice. The purpose of the current study was to determine the effects of several treatment regimens of fenbendazole on reproductive parameters in C57BL/6J mice. Uninfected mice were given fenbendazole-treated feed continuously or every other week until pups were born or weaned. This treatment also was combined with environmental decontamination. No significant differences in litter size, survival rate, or weaning weight were detected between groups. Under the conditions of this study, fenbendazole treatment does not affect reproduction in C57BL/6J mice.
Background: Hereditary breast cancer is common. With enhanced awareness and the recent introduction in affordable multi-gene germ line testing, an estimated 0.5-1 million women will learn that they carry a considerable risk to develop breast cancer. Thus, a rapidly increasing number of women, many of them very young, will be in need of effective strategies for breast cancer prevention. Current options to prevent breast cancer in women at high risk include bilateral mastectomies or systemic anti-estrogen therapy. Both options, while effective, may have a detrimental impact on the physical and emotional well-being of the patient. Localized delivery of an established anti-estrogen to breast tissue only may thus offer an attractive alternative for cancer prevention and may replace systemic therapy for ductal carcinoma in situ and early stage breast cancer with minimal risk for metastases. Methods: As such, we have sought to develop a silastic-silicone device, which when placed under breast tissue, will deliver the anti-estrogen fulvestrant directly to the target tissue. Sustained slow release of fulvestrant from a silastic-silicone device directly into the mammary tissue will provide the risk reducing benefits of systemic hormonal therapy while minimizing systemic exposure and the resulting poor compliance due to adverse effects. Results: Using a combination of in vitro and in vivo studies, we show that fulvestrant can be delivered through a silastic-silicone device. Implanted adjacent to mammary tissue, this drug delivery device provides sustained high levels of fulvestrant to inhibit estrogen receptor signaling and breast cancer cell proliferation. In a MCF-7 breast cancer xenograft model we have shown that silastic-silicone delivers fulvestrant selectively to mouse mammary tissue for more than 1 year with anti-tumor effects similar to those achieved with systemic fulvestrant exposure. Using the Sprague-Dawley rat DMBA spontaneous breast cancer induction model, we further demonstrate that fulvestrant delivered by silastic-silicone devices implanted adjacent to mammary tissue significantly delays time to first tumor compared to control animals (n=90, HR = 0.42, 95% CI 0.21-0.83) with minimal systemic exposure (plasma average 1.1 ng/mL, SD ±1.5 ng/mL). Initial large animal safety and toxicity studies in female sheep (ewes, n=2) support the surgical strategy to place the device between breast tissue (i.e. udder) and the chest wall (abdominal wall in ewes). Following 1 month of fulvestrant release, gross and histopathological analysis found no adverse effects or implant related toxicity. Bioanalytical analysis of mammary tissues suggested that drug was found highest near the implant (max 341 ng/g, udder average 58.4 ng/g, SD ±17.1 ng/g), with diminishing levels distal from the implant. Systemic exposure was low, with plasma levels 1.2 ng/mL, SD ±0.22 ng/mL, comparing favorably to clinical plasma levels achieved by intramuscular fulvestrant of 500 mg: 28.0 ng/mL, SD ±27.9 ng/mL (FDA package insert). Subsequent large animal studies will focus on the safety and pharmacokinetics of device delivered fulvestrant in longer studies (e.g. 3 to 6 months). Conclusions: The greater awareness and genetic identification of individuals at risk for breast cancer brings about an increased need for novel approaches to breast cancer prevention. The development of a silastic-silicone based device for sustained and localized drug delivery with an approved and effective anti-estrogen should allow rapid transition into clinical testing. This strategy will provide an alternative option to mastectomies and allow breast conservation for women identified to have a more than 40% lifetime chance of developing breast cancer, as well as provide an alternative to systemic hormonal therapy in women with ductal carcinoma in situ or stage I breast cancer. Citation Format: Pamela N Munster, Pujan K Desai, Nela Pawlowska, Elysia Roche, Romain Pacaud, Maxim A Daud, Emily Hsu, David Gingrich, Amelia Deitchman, Fran Aweeka, Scott Thomas. Silicone implant based sustained localized drug delivery of fulvestrant to prevent breast cancer [abstract]. In: Proceedings of the 2020 San Antonio Breast Cancer Virtual Symposium; 2020 Dec 8-11; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2021;81(4 Suppl):Abstract nr PS8-13.
Background: BRCA1 and BRCA2 are key mediators of DNA damage repair response including the homologous recombination repair (HRR) pathway. Mutations in these genes predispose women to various cancers including breast, ovarian and pancreatic cancers. A new class of drugs, the poly (ADP-ribose) polymerase inhibitors (PARPi), were designed to leverage impaired DNA repair in BRCA-mutated tumors and are FDA approved for various cancers (breast, ovarian). Efforts to combine PARPi with cytotoxic agents show increased efficacy but overlapping toxicities hamper their tolerability. Further, the short duration of response to PARPi monotherapy in diseases like breast cancer has inspired the search for PARPi combinations with other agents including epigenetic modifiers. To overcome these hurdles, we explored synergistic interactions between PARPi and DNA methyltransferases inhibitors (DNMTi) such as decitabine, a cytidine analog. When incorporated in newly synthesized DNA strands during S phase, these agents will trigger a covalent protein-DNA complex formation causing cell cycle arrest and cell death. Material & Methods: BRCA wild-type (WT) and BRCA-mutated breast cancer cell lines were used for in vitro analyses: SUM149PT and HCC-3153 (BRCA1-mutated), MDA-MB-231 and BT-549 (BRCA-WT), UCRP231A (a CRISPR/Cas9 engineered BRCA2-mutated from parental MDA-MB-231), and MCF10A (a BRCA-WT non-tumorigenic breast cell line). The combined effect of talazoparib (PARPi) and decitabine (DNMTi) was analyzed using Combenefit® software to determine their synergistic interaction. Cell cycle analyses, dead/alive cells ratio analyses, as well as pH2AX levels were evaluated. In vivo analyses included xenograft models with SUM149PT as well as the parental BRCA-WT MDA-MB-231 and BRCA2-mutated MDA-MB-231 (UCRP231A) cells in immunodeficient NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ mice. Results: Our preclinical data in BRCA-deficient breast cancer cell lines, demonstrated a synergistic inhibition of cell growth and enhancement of cell death at concentrations of talazoparib and decitabine where each agent individually had minimal efficacy. In cells with intact HRR pathways, the drug combination showed an enhanced inhibition of cell growth but was not synergistic in inducing cell death compared to BRCA deficient cell lines. This difference was further manifested by different cell cycle profiles: non-BRCA mutated cells arrested in S-phase while BRCA-mutated cells progressed through S-phase without arrest and entered cell death from G2/M. In vivo mouse data showed a significant synergistic interaction between the two drugs without enhanced toxicity. Conclusion: The ability to induce a synergistic interaction between talazoparib and decitabine at low drug concentrations present a promising therapeutic strategy for patients with HRR-deficient tumors. Ongoing experiments are being conducted to generate additional engineered BRCA- and other HRR-deficient cell lines (ATM, CHEK2 and others) through CRISPR/Cas9 DNA editing system and further delineate the differential mechanism of interaction between the HRR-deficient and HRR-intact cell lines in preparation for clinical testing. Citation Format: Romain Pacaud, Mallika Dhawan, Scott Thomas, Elysia Roche, Jose Garcia, Nela Pawlowska, Pamela Munster. Epigenetic modulation to deepen and prolong the response to PARP inhibitors [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr P3-11-12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.