Cytogenetic analysis was performed in peripheral blood lymphocytes from hospital workers chronically exposed to ionizing radiation in comparison to matched non-exposed individuals. The accumulated absorbed doses calculated for the radiation workers ranged from 9.5 to 209.4 mSv. The endpoints used were chromosomal aberrations (CA), micronuclei (MN), and sister chromatid exchanges (SCE). The frequencies of CA/100 cells observed for the exposed group were significantly (P=0.018) higher than in the control group: 3.2 and 2.6, respectively. Similarly, the mean numbers of SCE per cell were statistically higher (P=0.025) in the exposed group (6.2) in comparison with the control group (5.8). In the case of micronuclei analysis, no significant (P=0,06) difference between both groups was found, but these data should be cautiously interpreted since an increase in the frequencies of MN was found for radiation workers (3.0 MN/100 cells), compared to the control group (2.6 MN/100 cells) and this increase occur in parallel to CA and SCE frequencies. The difference between the results could be explained by the nature of CA and MN generation. The increased frequencies of CA and SCE in radiation workers indicate the cumulative effect of low-level chronic exposure to ionizing radiation, and the relevance of conducting cytogenetic analysis in parallel to physical dosimetry in the working place.
Alzheimer's disease (AD) is an age-related neurodegenerative pathology associated with accumulation of DNA damage. Inflammation and cell cycle alterations seem to be implicated in the pathogenesis of AD, although the molecular mechanisms have not been thoroughly elucidated to date. The aim of the present study was to evaluate whether peripheral blood mononuclear cells (PBMCs) of AD patients display alterations in gene expression profiles, focusing on finding markers that might improve the diagnosis of AD. Blood samples were collected from 22 AD patients and 13 healthy individuals to perform genome-wide mRNA expression. We found 593 differentially expressed genes in AD compared to controls, from which 428 were upregulated, and 165 were downregulated. By performing a gene set enrichment analysis, we observed pathways involved in inflammation, DNA damage response, cell cycle, and neuronal processes. Moreover, functional annotation analyses indicated that differentially expressed genes are strongly related to pathways associated with the cell cycle and the immune system. The results were compared with those of an independent study on hippocampus samples, and a number of genes in common between both studies were identified as potential peripheral biomarkers for AD, including DUSP1, FOS, SLC7A2, RGS1, GFAP, CCL2, ANGPTL4, and SSPN. Taken together, our results demonstrate that PBMCs of AD patients do present alterations in gene expression profiles, and these results are comparable to those previously reported in the literature for AD neurons, supporting the hypothesis that blood peripheral mononuclear cells express molecular changes that occur in the neurons of AD patients.
"Sucupira" oil and the lactone eremanthine, extracted from Pterodon pubescens and Eremanthus elaeagnus, respectively, are known for their cercaricidal action in experimental animals. Because of their biological effect, they have the potential to be used for the prophylaxis of schistosomiasis caused by Schistosoma mansoni. To test the clastogenicity of these agents, "sucupira" oil, either pure or diluted in corn oil, was tested in vivo on Wistar rat bone marrow cells following dermal application. Metaphase analysis showed that the compound did not induce a significant increase in the frequencies of chromosomal aberrations. When eremanthine was tested on BALB/c mice following gavage at doses of 100, 200, and 300 mg/kg bw, it did not induce structural or numerical chromosomal aberrations. In the in vitro treatment of human lymphocyte cultures, eremanthine also did not cause any increase in chromosomal aberrations or sister chromatid exchanges at the following concentrations in culture medium: 1.25, 2.50, and 5.00 micrograms/ml. From these results, under our experimental conditions, neither "sucupira" oil nor eremanthine showed clastogenic effects on mammalian cells in vivo or in vitro.
We have previously identified 30 differentially expressed genes when comparing recently diagnosed type 1 diabetes mellitus (DM-1) patients and controls paired for sex, age, and ethnic background. In this article we performed the hierarchical clustering of these genes taking into account the human-leukocyte-antigen (HLA)-DRB1/DQB1 profile. The dendrogram obtained using the Cluster program grouped patients and controls into three clusters, one including individuals with no susceptibility alleles, another including individuals with at least three susceptibility alleles, and a third intermingling susceptibility/protective alleles. In addition to other variables, the results of the present article suggest that the major histocompatibility complex (MHC) class II profile may be of relevance for the study of a large-scale differentially expressed genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.