An interface supporting plasmonic switching is prepared from a gold substrate coated with a polymer film doped with photochromic molecular switches. A reversible light-induced change in the surface plasmon polariton dispersion curve of the interface is experimentally demonstrated, evidencing reversible switching of the surface plasmon polariton group and phase velocity. The switching capabilities of the interface are furthermore successfully applied to achieve focus control of a plasmonic lens. The results imply the realization of nonvolatile and reversible plasmonic switching units providing complex functionalities based on surface plasmon refraction and group delay.
This paper discusses the functionalization of micro-cantilevers in order to bind and sense specific biogenic amines related to meat degradation (cadaverine). The micro-cantilevers were functionalized with the composite 1,4,8,11-tetraazacyclotetradecane (cyclam), which is binding to cadaverine molecules in the gas phase. Different functionalization conditions were investigated by immersing gold coated AFM cantilevers in cyclam solutions at different concentrations, for different functionalization times, and for different post-annealing treatments. The optimum morphology for high capture efficiency is found for short functionalization times without post-annealing treatment. Beside qualitative SEM inspection which indicates a significant morphology change for different functionalization parameters, the impact of functionalization morphology on analyte capture efficiency has been studied via micro-cantilever based mass detection. We demonstrate that besides conventional AFM systems a MEMS cantilever in combination with an optical read out is a powerful analytic system which is highly attractive for widespread use in diagnostic applications, with optimized functionalization conditions. The measured sensitivity at 7.7 kHz is 1.84 × 109 Hz/g
This paper presents an investigation of the functionalization of micro-cantilevers in order to bind to specific biogenic amines related to meat degradation, as for example cadaverine. The micro-cantilevers were functionalized with the compost 1,4,8,11 - tetraazacyclotetradecane (cyclam), which is binding to cadaverine molecules on gas phase. Different functionalization conditions were investigated, by immersing gold coated AFM cantilevers in cyclam solutions at different concentrations, for different functionalization times, and for different post-annealing treatments. The results show different morphologies for different conditions, and specific binding properties for different morphologies. The samples were exposed to gas phase cadaverine at different concentrations and to meat sample. Changes in resonance frequency of the cantilevers (due to mass increase by cadaverine binding) were measured using an atomic force microscope (AFM) and were in the range of few kHz, corresponding to a mass change of about 600 femtogram (for 4 seconds exposure to cadaverine)
We present a detailed investigation of a novel platform for integration of spintronic memory elements and a photonic network, for future ultrafast and energy-efficient memory. We designed and fabricated magnetic tunnel junction (MTJ) structures based on (Tb/Co)x5 multilayer stack with optically switchable magnetization. Optical single-pulse measurements allowed us to estimate the value of the stray field present in the parallel configuration, which prevents the structure from all-optical switching. We performed numerical calculations based on the Finite Difference Time Domain method and ellipsometry measurements of (Tb/Co)x5 to compute the absorption by the MTJ structure. Simulation results are in good agreement with the experimental measurements, where we implemented a thermal model to estimate effective absorption in the pillar. These estimations showed up to 14% absorption of the incident optical power in 300-nm-wide MTJ. Moreover, we designed and realized an integrated optical network with focusing structures to efficiently guide and couple the light into the MTJs. We show a chain of necessary steps to obtain the threshold value of the switching energy, and our results presenting a path forward for full system integration of optically switchable MRAM technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.