Laminar burning speeds and flame structures of spherically expanding flames of mixtures o f acetylene (C2H2) with air have been investigated over a wide range of equivalence ratios, temperatures, and pressures. Experiments have been conducted in a constant vol ume cylindrical vessel with two large end windows. The vessel was installed in a shadow graph system equipped with a high speed CMOS camera, capable of taking pictures up to 40,000 frames per second. Shadowgraphy was used to study flame structures and transi tion from smooth to cellular flames during flame propagation. Pressure measurements have been done using a pressure transducer during the combustion process. Laminar burning speeds were measured using a thermodynamic model employing the dynamic pressure rise during the flame propagation. Burning speeds were measured for tempera ture range o f300-590 K and pressure range of 0.5-3.3 atm, and the range of equivalence ratios covered from 0.6 to 2. The measured values of burning speeds compared well with existing data and extended for a wider range of temperatures. Burning speed measure ments have only been reported for smooth and laminar flames.
Given that sulfur contents of coals vary widely, this work investigated whether cofiring of high-sulfur coals with low-sulfur coals of different ranks has any distinct advantages on lowering the sulfur dioxide emissions of the former coals, beyond those predicted based on their blending proportions. Such cofiring intends to take advantage of documented evidence in previous investigations at the author's laboratory, which demonstrated that lignite coals of low-sulfur, high-calcium, and high-sodium content undergo massive bulk fragmentation during their devolatilization. This particular behavior generates a large number of small-sized char particles which, upon effective dispersion in the gas, can heterogeneously absorb the emitted sulfur dioxide gases, i.e., act as defacto sorbents, and then retain them in the ash. This study included two high- and medium-sulfur bituminous coals, two low-sulfur lignite coals, and a sub-bituminous coal. Results showed that bituminous coals burning under substoichiometric (fuel-lean) conditions release most of their sulfur content in the form of SO2 gases, whereas low-ranked coals only partly release their sulfur as SO2. Furthermore, the SO2 emission from coal blends is nonlinear with blend proportions, hence, beneficial synergisms that result in substantial overall reductions of SO2 can be attained. Finally, NOx emissions from coal blends did not show consistent beneficial synergisms under the implemented fuel-lean combustion conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.