Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy burden on neurologists and affects their performance. Several automatic techniques have been proposed using traditional approaches to assist neurologists in detecting binary epilepsy scenarios e.g. seizure vs. non-seizure or normal vs. ictal. These methods do not perform well when classifying ternary case e.g. ictal vs. normal vs. inter-ictal; the maximum accuracy for this case by the state-of-the-art-methods is 97±1%. To overcome this problem, we propose a system based on deep learning, which is an ensemble of pyramidal one-dimensional convolutional neural network (P-1D-CNN) models. In a CNN model, the bottleneck is the large number of learnable parameters. P-1D-CNN works on the concept of refinement approach and it results in 60% fewer parameters compared to traditional CNN models. Further to overcome the limitations of small amount of data, we proposed augmentation schemes for learning P-1D-CNN model. In almost all the cases concerning epilepsy detection, the proposed system gives an accuracy of 99.1±0.9% on the University of Bonn dataset.
Wireless communication systems play a very crucial role in modern society for entertainment, business, commercial, health and safety applications. These systems keep evolving from one generation to next generation and currently we are seeing deployment of fifth generation (5G) wireless systems around the world. Academics and industries are already discussing beyond 5G wireless systems which will be sixth generation (6G) of the evolution. One of the main and key components of 6G systems will be the use of Artificial Intelligence (AI) and Machine Learning (ML) for such wireless networks. Every component and building block of a wireless system that we currently are familiar with from our knowledge of wireless technologies up to 5G, such as physical, network and application layers, will involve one or another AI/ML techniques. This overview paper, presents an up-to-date review of future wireless system concepts such as 6G and role of ML techniques in these future wireless systems. In particular, we present a conceptual model for 6G and show the use and role of ML techniques in each layer of the model. We review some classical and contemporary ML techniques such as supervised and un-supervised learning, Reinforcement Learning (RL), Deep Learning (DL) and Federated Learning (FL) in the context of wireless communication systems. We conclude the paper with some future applications and research challenges in the area of ML and AI for 6G networks. INDEX TERMS Fifth generation (5G), sixth generation (6G), artificial intelligence (AI), machine learning (ML), deep learning (DL), reinforcement learning (RL), federated learning (FL).
In the smart grid (SG) environment, consumers are enabled to alter electricity consumption patterns in response to electricity prices and incentives. This results in prices that may differ from the initial price pattern. Electricity price and demand forecasting play a vital role in the reliability and sustainability of SG. Forecasting using big data has become a new hot research topic as a massive amount of data is being generated and stored in the SG environment. Electricity users, having advanced knowledge of prices and demand of electricity, can manage their load efficiently. In this paper, a recurrent neural network (RNN), long short term memory (LSTM), is used for electricity price and demand forecasting using big data. Researchers are working actively to propose new models of forecasting. These models contain a single input variable as well as multiple variables. From the literature, we observed that the use of multiple variables enhances the forecasting accuracy. Hence, our proposed model uses multiple variables as input and forecasts the future values of electricity demand and price. The hyperparameters of this algorithm are tuned using the Jaya optimization algorithm to improve the forecasting ability and increase the training mechanism of the model. Parameter tuning is necessary because the performance of a forecasting model depends on the values of these parameters. Selection of inappropriate values can result in inaccurate forecasting. So, integration of an optimization method improves the forecasting accuracy with minimum user efforts. For efficient forecasting, data is preprocessed and cleaned from missing values and outliers, using the z-score method. Furthermore, data is normalized before forecasting. The forecasting accuracy of the proposed model is evaluated using the root mean square error (RMSE) and mean absolute error (MAE). For a fair comparison, the proposed forecasting model is compared with univariate LSTM and support vector machine (SVM). The values of the performance metrics depict that the proposed model has higher accuracy than SVM and univariate LSTM.
) is a very contagious infection that has drawn the world's attention. Modeling such diseases can be extremely valuable in predicting their effects. Although classic statistical modeling may provide adequate models, it may also fail to understand the data's intricacy. An automatic COVID-19 detection system based on computed tomography (CT) scan or X-ray images is effective, but a robust system design is challenging. In this study, we propose an intelligent healthcare system that integrates IoT-cloud technologies. This architecture uses smart connectivity sensors and deep learning (DL) for intelligent decision-making from the perspective of the smart city. The intelligent system tracks the status of patients in real time and delivers reliable, timely, and high-quality healthcare facilities at a low cost. COVID-19 detection experiments are performed using DL to test the viability of the proposed system. We use a sensor for recording, transferring, and tracking healthcare data. CT scan images from patients are sent to the cloud by IoT sensors, where the cognitive module is stored. The system decides the patient status by examining the images of the CT scan. The DL cognitive module makes the real-time decision on the possible course of action. When information is conveyed to a cognitive module, we use a state-of-the-art classification algorithm based on DL, i.e., ResNet50, to detect and classify whether the patients are normal or infected by COVID-19. We validate the proposed system's robustness and effectiveness using two benchmark publicly available datasets (Covid-Chestxray dataset and Chex-Pert dataset). At first, a dataset of 6000 images is prepared from the above two datasets. The proposed system was trained on the collection of images from 80% of the datasets and tested with 20% of the data. Cross-validation is performed using a tenfold cross-validation technique for performance evaluation. The results indicate that the proposed system gives an accuracy of 98.6%, a sensitivity of 97.3%, a specificity of 98.2%, and an F1-score of 97.87%. Results clearly show that the accuracy, specificity, sensitivity, and F1-score of our proposed method are high. The comparison shows that the proposed system performs better than the existing state-of-the-art systems. The proposed system will be helpful in medical diagnosis research and healthcare systems. It will also support the medical experts for COVID-19 screening and lead to a precious second opinion.
The existing automatic fingerprint verification methods are designed to work under the assumption that the same sensor is installed for enrollment and authentication (regular matching). There is a remarkable decrease in efficiency when one type of contact-based sensor is employed for enrolment and another type of contact-based sensor is used for authentication (cross-matching or fingerprint sensor interoperability problem,). The ridge orientation patterns in a fingerprint are invariant to sensor type. Based on this observation, we propose a robust fingerprint descriptor called the co-occurrence of ridge orientations (Co-Ror), which encodes the spatial distribution of ridge orientations. Employing this descriptor, we introduce an efficient automatic fingerprint verification method for cross-matching problem. Further, to enhance the robustness of the method, we incorporate scale based ridge orientation information through Gabor-HoG descriptor. The two descriptors are fused with canonical correlation analysis (CCA), and the matching score between two fingerprints is calculated using city-block distance. The proposed method is alignment-free and can handle the matching process without the need for a registration step. The intensive experiments on two benchmark databases (FingerPass and MOLF) show the effectiveness of the method and reveal its significant enhancement over the state-of-the-art methods such as VeriFinger (a commercial SDK), minutia cylindercode (MCC), MCC with scale, and the thin-plate spline (TPS) model. The proposed research will help security agencies, service providers and law-enforcement departments to overcome the interoperability problem of contact sensors of different technology and interaction types.INDEX TERMS biometrics; fingerprint sensor interoperability; cross-sensor fingerprint matching; fingerprint verification; feature-level fusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.