Hepatocellular carcinoma (HCC) is a primary liver cancer, which is one of the most prevalent cancers among humans. Many factors are involved in the liver carcinogenesis as lifestyle and environmental factors. Hepatitis virus infections are now recognized as the chief etiology of HCC; however, the precise mechanism is still enigmatic till now. The inflammation triggered by the cytokine-mediated immune response, was reported to be the closest factor of HCC development. Cytokines are immunoregulatory proteins produced by immune cells, functioning as orchestrators of the immune response. Genes of cytokines and their receptors are known to be polymorphic, which give rise to variations in their genes. These variations have a great impact on the expression levels of the secreted cytokines. Therefore, cytokine gene polymorphisms are involved in the molecular mechanisms of several diseases. This piece of work aims to shed much light on the role of cytokine gene polymorphisms as genetic host factor in hepatitis related HCC.
Background:There is no doubt that hyperthermia is one of the powerful radiosensitizers. Finding a proper mechanism working in hyperthermia/radiation combination is still pronounced challenge.Objectives:This study is focusing on the anti-cancer activities (anti-proliferative, anti-angiogenic and antiapoptotic) of thermoradiotherapy. Materials and Methods:Liver cancer cell line (HepG2) was treated by 37oC, 40oC and 43oC hyperthermia degrees combined with three radiation doses (2 Gy, 4 Gy and 8 Gy) for 24, 48 and 72 hrs. Cell viability, apoptotic/necrotic cell screening, apoptotic (BAX and FasL) and antiapoptotic (BCL-2 and GRP78) genes, and pro-angiogenic mediators [vascular endothelial- (VEGF) and Platelet derived-growth factors (PDGF) ware investigated. Results:Our data showed that 40oC temperature combined with 4 Gy radiation gives a significant decrease (p<0.05) in cell viability. Maximum cytotoxicity was reported 48 hr post-treatment followed by slight restoration of cell viability after 72 hr. Compared with untreated cells, only 5% of viable cells with a high percentage of apoptotic (31%) and necrotic (63%) cells were demonstrated in 40oC/4 Gy/48 hr group. Expression of pro-apoptotic genes (BAX and FasL) were increased after hyperthermia with apparent elevation in 40oC/4 Gy/48 hr group coincides with moderate expression of antiapoptotic BCL-2 and GRP78 genes. A significant reduction (p<0.001; p<0.05) in VEGF and PDGF levels; respectively was shown at 40oC/4 Gy/48 hr group. Conclusions:This pilot study proposed 40oC mild temperature hyperthermia as a favorable hyperthermal condition with 4 Gy radiotherapy in HCC treatment. A further research has to be performed considering an application of more than one session of radiothermal therapy at 40oC/4 Gy for total abrogation of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.