Two facile spectroscopic methodologies were designed for estimating trospium chloride (TPM) in raw material and tablets with high operational reliability and selectivity. The methods were based on using erythrosine B (EB) as a spectroscopic tool for ion-pair complex formation with the drug. In a mild acidic medium of Britton Robinson buffer (pH 4.0), the ionized hydroxyl group in the reagent interacted with the ionized amine in the studied drug. Method I was based on the spectrophotometric measuring of the absorbance of the reaction product at 557 nm. Method II was based on spectrofluorimetric measurement of the quenching effect of TPM on the inherent fluorescence of EB at 550 nm (λ ex. = 528 nm).The two methods showed linearity through ranges 1.
A sensitive and green micellar spectrofluorimetric approach was applied for the simultaneous estimation of ivabradine hydrochloride (IVB) and felodipine (FLD) in the ng/ml concentration range. The approach depended on measuring the first derivative synchronous peak amplitude ( 1 D) of both drugs at Δλ = 60 nm in a Tween-80 micellar system. The method was rectilinear alongside the concentration ranges 0.02-0.4 μg/ml and 0.05-1.0 μg/ml at 269.5 nm and 378.5 nm for IVB and FLD, respectively.The proposed method was validated by following the International Council for Harmonization guidelines. The method was successfully applied without interference for laboratory-prepared synthetic mixtures, single pharmaceutical preparations, and within spiked biological fluids with acceptable percentage recoveries. A comparison of the performance of the suggested method with other methods, showed no discrepancy. The method's ecofriendly property evaluated using three different tools, confirming an excellent green method.
In this study, we have developed two facile spectroscopic methods for quantifying oxybutynin (OBT) hydrochloride in its pure form and tablets using design of experiments (DOEs). The spectroscopic methods depended on the ion-pair complex formation between the tertiary amino group in the drug and eosin in 0.2 M acetate buffer of pH 4. Method I involves spectrophotometric measurement of the absorbance of the developed complex at 550 nm and showed linearity through 1.0–10.0 µg ml −1 . Method II involves spectrofluorometric measurement of the quenching influence of OBT on the native fluorescence of eosin (λ excitation/λ emission of 304/548 nm) and showed linearity through 1.0–6.0 µg ml −1 . Critical parameters were identified through preliminary trials and optimized using the DOE. Additionally, the quenching mechanism was investigated and the pathway of the reaction was postulated. The fluorescence quenching constant and thermodynamic parameters were explored using the Stern–Volmer plot and Van't Hoff graph, respectively. Assessments conducted via analytical ecoscale revealed the ‘excellent-greenness’ of the methodology. The two methods have the potentials of being green and fast compared with other reported methods.
Hydrophilic interaction liquid chromatography (HILIC) has inherent merits over RP-HPLC in the analyzing of hydrophilic substances. Accordingly, an innovative HILIC-UV methodology is proposed for the simultaneous estimation of ethyl paraben (PRN), fluconazole (FLZ) and moxifloxacin hydrochloride (MOX) in raw materials and pharmaceutical eye gel. The separation process was conducted using Waters XBridge™ HILIC column (100 mm × 4.6 mm, 3.5 μm particle size) at room temperature. Isocratic mobile phase containing acetonitrile: 0.1% triethylamine buffer (90:10, v/v, pH 5.0), was pumped at flow rate 1.0 mL/min and detected at 260 nm. Under these optimized conditions, PRN, FLZ and MOX showed rectilinear relationships with the concentration ranges (0.5–6.0), (5.0–50.0) and (5.0–60.0) μg/mL, respectively. The developed method offered at least fivefold increase in sensitivity within shorter time than the reported methods. Three greenness assessment tools namely: Analytical eco-scale, GAPI and AGREE were exploited to investigate the method's impact on the environment and conduct a comparative study with the reported methods. International council of Harmonization (ICH) guidelines have been followed to calculate validation parameters. The statistical comparison between results of the suggested method and the comparison method showed no discrepancy confirming accuracy of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.