Despite the ubiquitous use over the past 150 years, the functions of the current medical needle are facilitated only by mechanical shear and cutting by the needle tip, i.e. the lancet. In this study, we demonstrate how nonlinear ultrasonics (NLU) extends the functionality of the medical needle far beyond its present capability. The NLU actions were found to be localized to the proximity of the needle tip, the SonoLancet, but the effects extend to several millimeters from the physical needle boundary. The observed nonlinear phenomena, transient cavitation, fluid streams, translation of micro- and nanoparticles and atomization, were quantitatively characterized. In the fine-needle biopsy application, the SonoLancet contributed to obtaining tissue cores with an increase in tissue yield by 3–6× in different tissue types compared to conventional needle biopsy technique using the same 21G needle. In conclusion, the SonoLancet could be of interest to several other medical applications, including drug or gene delivery, cell modulation, and minimally invasive surgical procedures.
Haptic devices can bring a sense of touch to virtual interactions, with substantial benefits for communication and health. Mid-air ultrasound can generate acoustic radiation forces for tailored tactile sensations -'touch without touching'. To study the neuroscience of haptics, devices must be compatible with neural monitors. In this study, electromagnetic shielding with a Faraday was created. Our device creates a palpable focus of ultrasound with sufficient spatial resolution (5 mm diameter) and radiation pressure (1.56 or 1.76 Pa without or with Faraday cage lid, respectively) to stimulate small areas of skin. Magnetometer measurements showed minimal field strength variability around the system. Therefore, the proposed system could be compatible with neurological monitoring for neuroscience studies.
Neurostimulations which use High Frequency (HF) block show great promise for neuromodulatory therapies. Treatments have been developed for various health conditions including obesity and obesity related health risks, and now even stomach cancer treatments are being considered. However the mechanism of the block is still not completely clear, as well as how various neural and electrode parameters affect it. In order to study conduction block during HF stimulation in mammalian axons, we describe a detailed computational model and perform comprehensive simulations. We establish relationships between the blocking frequency and amplitude versus fibre diameter and the distance between the electrode and fibre. We found that only a certain level of depolarisation will universally create a block irrespective of the fibre size, and it is in the range 24-30 mV depending on the stimulus frequency. Our study crucially improves our knowledge about this important technique which is rapidly emerging as a commercially available therapy.
Non-invasive therapeutic ultrasound (US) methods, such as high-intensity focused ultrasound (HIFU), have limited access to tissue targets shadowed by bones or presence of gas. This study demonstrates that an ultrasonically actuated medical needle can be used to translate nanoparticles and fluids under the action of nonlinear phenomena, potentially overcoming some limitations of HIFU. A simulation study was first conducted to study the delivery of a tracer with an ultrasonically actuated needle (33 kHz) inside a porous medium acting as a model for soft tissue. The model was then validated experimentally in different concentrations of agarose gel showing a close match with the experimental results, when diluted soot nanoparticles (diameter < 150 nm) were employed as delivered entity. An additional simulation study demonstrated a threefold increase in the volume covered by the delivered agent in liver under a constant injection rate, when compared to without US. This method, if developed to its full potential, could serve as a cost effective way to improve safety and efficacy of drug therapies by maximizing the concentration of delivered entities within, e.g., a small lesion, while minimizing exposure outside the lesion.
Ultrasonic cavitation is being used in medical applications as a way to influence matter, such as tissue or drug vehicles, on a micro-scale. Oscillating or collapsing cavitation bubbles provide transient mechanical force fields, which can, e.g., fractionate soft tissue or even disintegrate solid objects, such as calculi. Our recent study demonstrates that an ultrasonically actuated medical needle can create cavitation phenomena inside water. However, the presence and behavior of cavitation and related bioeffects in diagnostic and therapeutic applications with ultrasonically actuated needles are not known. Using simulations, we demonstrate numerically and experimentally the cavitation phenomena near ultrasonically actuated needles. We define the cavitation onset within a liver tissue model with different total acoustic power levels. We directly visualize and quantitatively characterize cavitation events generated by the ultrasonic needle in thin fresh bovine liver sections enabled by high-speed imaging. On a qualitative basis, the numerical and experimental results show a close resemblance in threshold and spatial distribution of cavitation. These findings are crucial for developing new methods and technologies employing ultrasonically actuated fine needles, such as ultrasound-enhanced fine-needle biopsy, drug delivery, and histotripsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.