Abstract:Pasteurella pneumotropica is an opportunistic pathogen in rodents. Natural infection in immunodeficient animals suggests that immunodeficiency is a major factor in P. pneumotropica pathogenesis. To understand this process, we performed clinical, pathological and bacteriological studies of immunodeficient NOD/ShiJic-scid/Jcl and immunocompetent Crlj:CD1 (ICR) mice experimentally infected with P. pneumotropica ATCC 35149. From 14 days postinoculation, some of P. pneumotropica-infected NOD/ShiJic-scid/Jcl mice developed clinical signs of weight loss. Three of 10 P. pneumotropica-infected NOD/ShiJic-scid/Jcl mice developed clinical signs of depression, ruffled coat, and weight loss and died at 27, 34, and 59 days postinoculation. At 35 days postinoculation, almost all P. pneumotropica-infected NOD/ShiJic-scid/Jcl mice had lung abscesses. The bacteria were isolated from the upper and lower respiratory tracts, including the lungs, and blood. In contrast, P. pneumotropicainfected ICR mice exhibited no clinical signs or lesions. The bacteria were isolated from the upper, but not the lower respiratory tracts. We developed an animal model for understanding host interactions with P. pneumotropica.
Pasteurella pneumotropica, a ubiquitous Gram-negative bacterium, is an opportunistic pathogen for rodents (28). This agent can be frequently isolated from the upper respiratory tract, lungs, vagina, trachea and other digestive organs. P. pneumotropica does not significantly affect the health of immunocompetent animals. However, immunodeficient animals infected with P. pneumotropica develop severe or lethal pneumonia (1,8,13,25). Chapes et al. (8) reported that P. pneumotropica induced lethal pneumonia in mice lacking alleles for MHCII, Tlr4, and Nramp1. Furthermore, Hart et al. (13) reported that Toll-like receptor 4 positive macrophages were indispensable for defense against the P. pneumotropica infections in mice. Therefore, control and monitoring of P. pneumotropica infections are requisites for managing the immunodeficient animals.P. pneumotropica was first characterized by Jawetz (17). Heyl (15) then proposed the biotype of P. pneumotropica based on utilization of carbon sources, and P. pneumotropica was reclassified as P. pneumotropica biotypes Jawetz and Heyl (27). Subsequently, Boot and Bisgaard (6) reported the detailed biochemical variations of P. pneumotropica including wild type strains. Further, Boot et al. (7) reported that the P. pneumotropica isolates could be differentiated by haemagglutinating properties of the isolates. However, host variation and the some phenotypic characteristics of the P. pneu- Abstract: A total of 52 isolates of Pasteurella pneumotropica obtained from rodents were examined for their genetic heterogeneity. On the basis of DNA restriction analysis, including amplified 16S ribosomal DNA restriction analysis (ARDRA) and pulsed-field gel electrophoresis (PFGE), differences were identified among the isolates. ARDRA typing with HaeIII revealed 4 different banding patterns of the P. pneumotropica isolates. Eighty-two percent of the 23 isolates identified as a-1 were derived from mice, whereas all the isolates identified as a-3 were derived from rats. Most of the isolates, which showed hemolytic activity on blood agar, obtained from mice and rats, were identified as a-2 and a-4, respectively. By restriction analysis of genomic DNA, ApaI and NotI digestion differentiated 9 variants and an undiscriminating group. However, no close relation with regard to the phenotypic characteristics was observed among the variants. The isolates identified as a-2 and a-4 could not be distinguished by PFGE analysis. DNA restriction analysis revealed that the genetic diversity of the P. pneumotropica isolates was more complex than the phenotypic characteristics among the species, and that at least the P. pneumotropica isolates were clearly differentiated into 4 groups by ARDRA typing with HaeIII.
Morphological detection of cancer cells in the rabbit VX2 allograft transplantation model is often difficult in a certain region such as serosal cavity where reactive mesothelial cells mimic cancer cells and both cells share common markers such as cytokeratins. Therefore, tagging VX2 cells with a specific and sensitive marker that easily distinguishes them from other cells would be advantageous. Thus, we tried to establish a successively transplantable, enhanced green fluorescent protein (EGFP)-expressing VX2 model. Cancer cells obtained from a conventional VX2-bearing rabbit were cultured in vitro and transfected with an EGFP-encoding vector, and then successively transplanted in Healthy Japanese White rabbits (HJWRs) (n = 8). Besides, conventional VX2 cells were transplanted in other HJWRs (n = 8). Clinicopathological comparison analyses were performed between the two groups. The success rate of transplantation was 100% for both groups. The sensitivity and specificity of EGFP for immunohistochemical detection of VX2 cells were 84.3 and 100%, respectively. No significant differences in cancer cell morphology, tumor size (P = 0.742), Ki-67 labeling index (P = 0.878), or survival rate (P = 0.592) were observed between the two. VX2 cells can be genetically altered, visualized by EGFP, and successively transplanted without significant alteration of morphological and biological properties compared to those of the conventional model.
SummaryThe surface structures of the cells of Pasteurella pneumotropica from mice and Pasteurella multocida from rabbits were examined by transmission electron microscopy after ruthenium red staining and polycationic ferritin labelling. P. pneumotropica strains ATCC 35149 and K 79114 had slight extracellular fibrous materials associated with cell walls with ruthenium red staining. Ferritin labelling method revealed thick strands or sparsely ferritinlabelled materials on the cell surface of the strains. P. multocida strains Pm-78 and P-2440 had ferritin-labelled capsules surrounded with the cell wall. Strain Pm-78, which was serotyped as A:12, had a thick capsule, whereas serotype À:3 strain P-2440 had a thin and irregular capsule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.