Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
We have designed, fabricated, and characterized metamaterial enhanced bimaterial cantilever pixels for far-infrared detection. Local heating due to absorption from split ring resonators (SRRs) incorporated directly onto the cantilever pixels leads to mechanical deflection which is readily detected with visible light. Highly responsive pixels have been fabricated for detection at 95 GHz and 693 GHz, demonstrating the frequency agility of our technique. We have obtained single pixel responsivities as high as 16,500 V/W and noise equivalent powers of 10(-8) W/Hz(1/2) with these first-generation devices.
Thermophotovoltaics (TPV) is the process by which photons radiated from a thermal emitter are converted into electrical power via a photovoltaic cell. Selective thermal emitters that can survive at temperatures at or above ∼1000°C have the potential to greatly improve the efficiency of TPV energy conversion by restricting the emission of photons with energies below the photovoltaic (PV) cell bandgap energy. In this work, we demonstrated TPV energy conversion using a high-temperature selective emitter, dielectric filter, and 0.6 eV In 0.68 Ga 0.32 As photovoltaic cell. We fabricated a passivated platinum and alumina frequency-selective surface by conventional stepper lithography. To our knowledge, this is the first demonstration of TPV energy conversion using a metamaterial emitter. The emitter was heated to >1000°C, and converted electrical power was measured. After accounting for geometry, we demonstrated a thermal-to-electrical power conversion efficiency of 24.1 0.9% at 1055°C. We separately modeled our system consisting of a selective emitter, dielectric filter, and PV cell and found agreement with our measured efficiency and power to within 1%. Our results indicate that high-efficiency TPV generators are possible and are candidates for remote power generation, combined heat and power, and heat-scavenging applications.
Time-resolved measurements of carrier recombination are reported for a midwave infrared InAs=InAs 0.66 Sb 0.34 type-II superlattice (T2SL) as a function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the lowinjection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg 1−x Cd x Te dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. These results illustrate the potential for InAs=InAs 1−x Sb x T2SLs as absorbers in infrared photodetectors.
Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.