OBJECTIVE To evaluate the effects of low-level laser therapy isolated and associated with Calendula officinalis oil in treating diabetic foot ulcers. METHOD An experimental, randomized, controlled, prospective, interventional clinical case study using a quantitative approach. The sample consisted of 32 diabetic patients of both genders. Participants were randomly divided into four groups. Doppler Ultrasound evaluation of the Ankle-Brachial Index, brief pain inventory and analog pain scale were performed at baseline and after 30 days. RESULTS Reduced pain was observed in the Low-level laser therapy and Low-level laser therapy associated with Essential Fatty Acids groups (p<0.01). Regarding the Ankle-Brachial Index and Doppler Ultrasound, all groups remained stable. By analyzing lesion area reduction, Low-level laser therapy associated with Essential fatty acids group showed a significance of p=0.0032, and the Low-level laser therapy group showed p=0.0428. CONCLUSION Low-level laser therapy, performed alone or associated with the Calendula officinalis oil was effective in relieving pain and accelerating the tissue repair process of diabetic foot.
The aim of this study was to evaluate the process of bone repair in rats submitted to low-level laser therapy using optical densitometry. A total of 45 rats which underwent femoral osteotomy were randomly distributed into three groups: control (group I) and laser-treated groups using wavelengths in the red (λ, 660-690 nm) and in the infrared (λ, 790-830 nm) spectra (group II and group III, respectively). The animals (five per group) were killed after 7, 14, and 21 days and the femurs were removed for optical densitometry analysis. Optical density showed a significant increase in the degree of mineralization (gray level) in both groups treated with the laser after 7 days. After 14 days, only the group treated with laser therapy in the infrared spectrum showed higher bone density. No differences were observed between groups after 21 days. Such results suggest the positive effect of low-level laser therapy in bone repair is time- and wavelength-dependent. In addition, our results have confirmed that optical densitometry technique can measure bone mineralization status.
PURPOSE:To evaluate the effects of the low-level laser therapy applying Laser on the tissue repair in ulcer carriers due to diabetes.
METHODS:Sixteen type II diabetic patients, ulcer carriers in the lower limbs, participated in the research from which eight were in the control group and eight were submitted to the low-level laser therapy with a pulsed wave form, visible ray, wave length of 632.8 nm,
mW peak power, (Laser -HTM). The application time was of 80 (4J/cm2 ) seconds. The application was punctual without contact (approximately 1mm of distance), the pen being held in a perpendicular position related to the wound, in equidistant points. There were 12 appointments, of which three were done weekly in alternated days. Photograph records and an application of the brief inventory of pain were done before and after 30 days of follow-up.
RESULTS:There was a significant decrease in the size of the wound when compared to the control group (p<0.05). The pain was also reported as having an intense improvement in the treated group.
CONCLUSION:The low-level laser treatment seems to be an efficient method, viable, painless and of low costs concerning the tissue repair ulcers in a diabetic foot.
Phototherapy with low-level coherent light (laser) has been reported as an analgesic and anti-inflammatory as well as having a positive effect in tissue repair in orthodontics. However, there are few clinical studies using low-level LED therapy (non-coherent light). The aim of the present study was to analyze the pain symptoms after orthodontic tooth movement associated with and not associated with coherent and non-coherent phototherapy. Fifty-five volunteers (mean age = 24.1 ± 8.1 years) were randomly divided into four groups: G1 (control), G2 (placebo), G3 (protocol 1: laser, InGaAlP, 660 nm, 4 J/cm(2), 0.03 W, 25 s), G4 (protocol 2: LED, GaAlAs, 640 nm with 40 nm full-bandwidth at half-maximum, 4 J/cm(2), 0.10 W, 70 s). Separators were used to induce orthodontic pain and the volunteers pain levels were scored with the visual analog scale (VAS) after the separator placement, after the therapy (placebo, laser, or LED), and after 2, 24, 48, 72, 96, and 120 h. The laser group did not have statistically significant results in the reduction of pain level compared to the LED group. The LED group had a significant reduction in pain levels between 2 and 120 h compared to the control and the laser groups. The LED therapy showed a significant reduction in pain sensitivity (an average of 56%), after the orthodontic tooth movement when compared to the control group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.