Metagenomic sequencing has greatly enhanced the discovery of viral genomic sequences; however, it remains challenging to identify the host(s) of these new viruses. We developed VirHostMatcher-Net, a flexible, network-based, Markov random field framework for predicting virus–prokaryote interactions using multiple, integrated features: CRISPR sequences and alignment-free similarity measures ($s_2^*$ and WIsH). Evaluation of this method on a benchmark set of 1462 known virus–prokaryote pairs yielded host prediction accuracy of 59% and 86% at the genus and phylum levels, representing 16–27% and 6–10% improvement, respectively, over previous single-feature prediction approaches. We applied our host prediction tool to crAssphage, a human gut phage, and two metagenomic virus datasets: marine viruses and viral contigs recovered from globally distributed, diverse habitats. Host predictions were frequently consistent with those of previous studies, but more importantly, this new tool made many more confident predictions than previous tools, up to nearly 3-fold more (n > 27 000), greatly expanding the diversity of known virus–host interactions.
Cyanophages exert important top-down controls on their cyanobacteria hosts; however, concurrent analysis of both phage and host populations is needed to better assess phage–host interaction models. We analyzed picocyanobacteria Prochlorococcus and Synechococcus and T4-like cyanophage communities in Pacific Ocean surface waters using five years of monthly viral and cellular fraction metagenomes. Cyanophage communities contained thousands of mostly low-abundance (<2% relative abundance) species with varying temporal dynamics, categorized as seasonally recurring or non-seasonal and occurring persistently, occasionally, or sporadically (detected in ≥85%, 15-85%, or <15% of samples, respectively). Viromes contained mostly seasonal and persistent phages (~40% each), while cellular fraction metagenomes had mostly sporadic species (~50%), reflecting that these sample sets capture different steps of the infection cycle—virions from prior infections or within currently infected cells, respectively. Two groups of seasonal phages correlated to Synechococcus or Prochlorococcus were abundant in spring/summer or fall/winter, respectively. Cyanophages likely have a strong influence on the host community structure, as their communities explained up to 32% of host community variation. These results support how both seasonally recurrent and apparent stochastic processes, likely determined by host availability and different host-range strategies among phages, are critical to phage–host interactions and dynamics, consistent with both the Kill-the-Winner and the Bank models.
The chemical structure of DNA must be continually repaired. MutY removes adenine to initiate repair at OG:A lesions in DNA. It is found in all three kingdoms of life, underscoring its importance for genome integrity. Clinical
The geochemical process of serpentinization releases energy and organic carbon: two of the basic requirements needed to support life. Sites of active serpentinization in the deep subsurface provide the intriguing possibility of a non-photosynthetically-supported biosphere. However, serpentinization also creates conditions, such as high pH and limited electron acceptors, which may limit microbial growth and diversity. Gaining an understanding of the identity and metabolic potential of microbes that thrive in these environments may provide insight as to whether serpentinization is sufficient to independently support life. Tablelands Ophiolite in Gros Morne National Park, Newfoundland, Canada is a continental site of serpentinization where serpentinite springs form surface pools. These pools provide easy sampling access to subsurface fluids and may allow for sampling of the subsurface microbial community. However, identification of members of the subsurface community in these pools is complicated by both surface contamination and contamination by organisms that inhabit the transition zone where hydrogen-rich subsurface fluids meet oxygen-rich surface fluids. This study was designed to distinguish among these potential sources of microorganisms by using a sampling technique that more effectively samples subsurface fluids. Community dissimilarity comparisons using environmental 16S rRNA gene sequencing indicate that the sampling design led to more direct access to subsurface fluids. These results are supported by metagenomic analyses that show metabolic pathways consistent with non-photosynthetic carbon fixation in the samples expected to represent subsurface fluids and that show hydrogen oxidation pathways in samples associated with the surface sources. These results provide a clearer picture of the diversity and metabolic potential of microbial communities potentially inhabiting subsurface, serpentinite-hosted habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.