Vertical profiles of black carbon (BC) and other light-absorbing impurities were measured in seasonal snow and permanent snowfields in the Chilean Andes during Austral winters 2015 and 2016, at 22 sites between latitudes 18°S and 41°S. The samples were analyzed for spectrally-resolved visible light absorption. For surface snow, the average mass mixing ratio of BC was 15 ng/g in northern Chile (18–33°S), 28 ng/g near Santiago (a major city near latitude 33°S, where urban pollution plays a significant role), and 13 ng/g in southern Chile (33–41°S). The regional average vertically-integrated loading of BC was 207 µg/m
2
in the north, 780 µg/m
2
near Santiago, and 2500 µg/m
2
in the south, where the snow season was longer and the snow was deeper. For samples collected at locations where there had been no new snowfall for a week or more, the BC concentration in surface snow was high (~10–100 ng/g) and the sub-surface snow was comparatively clean, indicating the dominance of dry deposition of BC. Mean albedo reductions due to light-absorbing impurities were 0.0150, 0.0160, and 0.0077 for snow grain radii of 100 µm for northern Chile, the region near Santiago, and southern Chile; respective mean radiative forcings for the winter months were 2.8, 1.4, and 0.6 W/m
2
. In northern Chile, our measurements indicate that light-absorption by impurities in snow was dominated by dust rather than BC.
We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three‐dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss‐Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range −39°C to −29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet‐specific information than has previously been appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.