Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.
Emerging evidence suggests that contact tracing has had limited success in the UK in reducing the R number across the COVID-19 pandemic. We investigate potential pitfalls and areas for improvement by extending an existing branching process contact tracing model, adding diagnostic testing and refining parameter estimates. Our results demonstrate that reporting and adherence are the most important predictors of programme impact but tracing coverage and speed plus diagnostic sensitivity also play an important role. We conclude that well-implemented contact tracing could bring small but potentially important benefits to controlling and preventing outbreaks, providing up to a 15% reduction in R. We reaffirm that contact tracing is not currently appropriate as the sole control measure.
The low prevalence levels associated with lymphatic filariasis elimination pose a challenge for effective disease surveillance. As more countries achieve the World Health Organization criteria for halting mass treatment and move on to surveillance, there is increasing reliance on the utility of transmission assessment surveys (TAS) to measure success. However, the long-term disease outcomes after passing TAS are largely untested. Using 3 well-established mathematical models, we show that low-level prevalence can be maintained for a long period after halting mass treatment and that true elimination (0% prevalence) is usually slow to achieve. The risk of resurgence after achieving current targets is low and is hard to predict using just current prevalence. Although resurgence is often quick (<5 years), it can still occur outside of the currently recommended postintervention surveillance period of 4–6 years. Our results highlight the need for ongoing and enhanced postintervention monitoring, beyond the scope of TAS, to ensure sustained success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.